The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microsco...The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) and electrochemical measurements.It was found that the coarse dendrites structure transformed into the equiaxed grains as well as a small amount of dendrite grains after adding Ga and Bi into Al-Zn-Sn alloys.A high current efficiency of 97% and even corrosion morphology were obtained for Al-7Zn-0.1Sn-0.015Ga-0.1Bi alloy.The results indicate that the proper amount of Ga and Bi is effective on improving the microstructure and electrochemical performance of Al-Zn-Sn alloy.展开更多
Electrochemical impendence spectroscopy (EIS) is applied to investigate the dissolution behavior of Al-Zn alloys in 3% NaCl solution at different polarization potentials. A new reaction model is proposed, and the ac...Electrochemical impendence spectroscopy (EIS) is applied to investigate the dissolution behavior of Al-Zn alloys in 3% NaCl solution at different polarization potentials. A new reaction model is proposed, and the activation mechanism of zinc in Al-Zn alloys is achieved. There are three intermediates in the dissolution process: Znad^+, Znad^2+ and Alad^+, ,of which only Zni can activate Al-Zn alloys. Most Znnd^+ is produced by β-phase,and the alloys with 2. 3% - 3. 8% (wt) Zn dissolve rapidly. The Al-Zn alloys of heart-shaped EIS are active in 3% NaCl solution, thus EIS characteristic can be used to distinguish the activa-tion of Al-Zn alloys.展开更多
Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using ca...Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.展开更多
In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, ...In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.展开更多
According to dynamics of coupled galvanic anode with carbon steel,the integral of galvanic current vs.time is approximately equal to actual current capacity of galvanic anode.Galvanic current of cast aluminum galvanic...According to dynamics of coupled galvanic anode with carbon steel,the integral of galvanic current vs.time is approximately equal to actual current capacity of galvanic anode.Galvanic current of cast aluminum galvanic anode coupled with carbon steel is tested in3.5%NaCl solution and ambient temperature.Rapid evaluation the performance of galvanic anode using galvanic current is feasible,and the test time is20min.The galvanic current is used to select aluminum galvanic anodes in oil brine,and then test the galvanic anodes with impressed current test method.The result shows,the performance of galvanic anodes degrads in oil brine,but has not much difference in the two media to the preferable anodes,and the optimal galvanic anode is gained.展开更多
Electrocarboxylation ofbenzalacetone was studied in the presence of an atmospheric pressure of CO2 The only carboxylic product obtained was α-phenyl levulinic acid in a one-compartment electrochemical cell equipped w...Electrocarboxylation ofbenzalacetone was studied in the presence of an atmospheric pressure of CO2 The only carboxylic product obtained was α-phenyl levulinic acid in a one-compartment electrochemical cell equipped with a Mg sacrificial anode at the controlled potential conditions. Influences of the solvents, the electrolytes, the cathode materials, the electrolysis potentials, the concentrations of substrate and the temperatures were studied to improve the yield. The maximal yield is 69% in MeCN-0.1 mol/L TEABF4 on Stainless steel-Mg under a controlled potential of-1.6 V vs.Ag/AgI until 2 F/mol of charge had passed through the cell at 0 ℃.展开更多
基金Project(094200510019) supported by Technology Creative Programmer of Henan for Excellent Talents,ChinaProject(092300410132) supported by the Natural Science Foundation of Henan Province,China
文摘The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) and electrochemical measurements.It was found that the coarse dendrites structure transformed into the equiaxed grains as well as a small amount of dendrite grains after adding Ga and Bi into Al-Zn-Sn alloys.A high current efficiency of 97% and even corrosion morphology were obtained for Al-7Zn-0.1Sn-0.015Ga-0.1Bi alloy.The results indicate that the proper amount of Ga and Bi is effective on improving the microstructure and electrochemical performance of Al-Zn-Sn alloy.
基金National Natural Science Foundation of China(Nos.51204147,51274175,51574206,51574207)Program for International S&T Cooperation Projects of China(No.2014DFA50320)+1 种基金Program for International S&T Cooperation Projects of Shanxi Province(No.201381017)Technological Projects of Shanxi Province(No.20150313002-3)
文摘Electrochemical impendence spectroscopy (EIS) is applied to investigate the dissolution behavior of Al-Zn alloys in 3% NaCl solution at different polarization potentials. A new reaction model is proposed, and the activation mechanism of zinc in Al-Zn alloys is achieved. There are three intermediates in the dissolution process: Znad^+, Znad^2+ and Alad^+, ,of which only Zni can activate Al-Zn alloys. Most Znnd^+ is produced by β-phase,and the alloys with 2. 3% - 3. 8% (wt) Zn dissolve rapidly. The Al-Zn alloys of heart-shaped EIS are active in 3% NaCl solution, thus EIS characteristic can be used to distinguish the activa-tion of Al-Zn alloys.
文摘Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.
文摘In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.
基金National Natural Science Foundation of China(Nos.51204147,51274175,51574206,51574207)Program for International S&T Cooperation Projects of China(No.2014DFA50320)+1 种基金Program for International S&T Cooperation Projects of Shanxi Province(No.201381017)Technological Projects of Shanxi Province(No.20150313002-3)
文摘According to dynamics of coupled galvanic anode with carbon steel,the integral of galvanic current vs.time is approximately equal to actual current capacity of galvanic anode.Galvanic current of cast aluminum galvanic anode coupled with carbon steel is tested in3.5%NaCl solution and ambient temperature.Rapid evaluation the performance of galvanic anode using galvanic current is feasible,and the test time is20min.The galvanic current is used to select aluminum galvanic anodes in oil brine,and then test the galvanic anodes with impressed current test method.The result shows,the performance of galvanic anodes degrads in oil brine,but has not much difference in the two media to the preferable anodes,and the optimal galvanic anode is gained.
基金Acknowlegement: This work was supported by National Nature Science Foundation of China (No. 20573037), the Natural Science Foundation of Shanghai (No. 05JC470) and Shanghai Leading Academic Discipline Project (No. B409).
文摘Electrocarboxylation ofbenzalacetone was studied in the presence of an atmospheric pressure of CO2 The only carboxylic product obtained was α-phenyl levulinic acid in a one-compartment electrochemical cell equipped with a Mg sacrificial anode at the controlled potential conditions. Influences of the solvents, the electrolytes, the cathode materials, the electrolysis potentials, the concentrations of substrate and the temperatures were studied to improve the yield. The maximal yield is 69% in MeCN-0.1 mol/L TEABF4 on Stainless steel-Mg under a controlled potential of-1.6 V vs.Ag/AgI until 2 F/mol of charge had passed through the cell at 0 ℃.