期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合静态属性和动态轨迹的盗窃前科人员分类研究 被引量:1
1
作者 胡啸峰 石拓 瞿珂 《北京理工大学学报》 EI CAS CSCD 北大核心 2020年第1期62-68,共7页
以往犯罪前科人员分类研究,通常基于历史犯罪信息中的静态属性信息,而忽略了对动态轨迹信息的利用,且缺乏专门针对盗窃前科人员再犯罪风险预测的研究.基于上述以往研究的不足,本文研究融合静态属性和动态轨迹的盗窃前科人员初犯/累犯分... 以往犯罪前科人员分类研究,通常基于历史犯罪信息中的静态属性信息,而忽略了对动态轨迹信息的利用,且缺乏专门针对盗窃前科人员再犯罪风险预测的研究.基于上述以往研究的不足,本文研究融合静态属性和动态轨迹的盗窃前科人员初犯/累犯分类.构建了融合静态属性和动态轨迹的长时间跨度盗窃前科人员分类数据集,然后探索和对比多种不同类型机器学习模型在该数据集上对盗窃前科人员的分类性能,提炼出与盗窃前科人员分类最相关的特征;基于上述分析结果,提出基于加权关联规则的盗窃犯罪人员预警模型.本文的相关研究成果可以应用于盗窃犯罪的预警工作中,对犯罪打击和安全防范工作具有一定的现实意义. 展开更多
关键词 盗窃 犯罪前科人员 静态属性 动态轨迹
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部