为了改善低层特征对图像内容描述不够精确而导致现勘图像分类准确率低的问题,提出一种利用深度学习特征的改进局部约束线性编码(local-constrained linear coding,LLC)算法。采用滑动窗口法提取图像密集卷积神经网络(convolutional neur...为了改善低层特征对图像内容描述不够精确而导致现勘图像分类准确率低的问题,提出一种利用深度学习特征的改进局部约束线性编码(local-constrained linear coding,LLC)算法。采用滑动窗口法提取图像密集卷积神经网络(convolutional neural networks,CNN)特征;利用近似LLC算法对提取的密集CNN特征进行快速编码和最大池化,并采用多尺度空间金字塔匹配产生包含空间位置信息的稀疏编码特征。最后,利用支持向量机对现勘图像进行分类从而得到高效的图像特征。对比实验结果表明,该算法的分类准确率较高。展开更多
文摘为了改善低层特征对图像内容描述不够精确而导致现勘图像分类准确率低的问题,提出一种利用深度学习特征的改进局部约束线性编码(local-constrained linear coding,LLC)算法。采用滑动窗口法提取图像密集卷积神经网络(convolutional neural networks,CNN)特征;利用近似LLC算法对提取的密集CNN特征进行快速编码和最大池化,并采用多尺度空间金字塔匹配产生包含空间位置信息的稀疏编码特征。最后,利用支持向量机对现勘图像进行分类从而得到高效的图像特征。对比实验结果表明,该算法的分类准确率较高。