Plant diversity is currently being lost at an unprecedented rate, resulting in an associated decrease in ecosystem services. About a third of the world's vascular plant species face the threat of extinction due to a ...Plant diversity is currently being lost at an unprecedented rate, resulting in an associated decrease in ecosystem services. About a third of the world's vascular plant species face the threat of extinction due to a variety of devastating activities, including, over-harvesting and over exploitation, destructive agricul- tural and forestry practices, urbanization, environmental pollution, land-use changes, exotic invasive species, global climate change, and more. We therefore need to increase our efforts to develop integrative conservation approaches for plant species conservation. Botanical gardens devote their resources to the study and conservation of plants, as well as making the world's plant species diversity known to the public. These gardens also play a central role in meeting human needs and providing well-being. In this minireview, a framework for the integrated missions of botanical gardens, including scientific research, inJex situ conservation, plant resource utilization, and citizen science are cataloged. By reviewing the history of the development of Kunming Botanical Garden, we illustrate successful species conservation approaches (among others, projects involving Camellia, Rhododendron, Magnolia, Begonia, Alliurn, Ne- penthes, medicinal plants, ornamental plants, and Plant Species with Extreme Small Populations), as well as citizen science, and scientific research at Kunming Botanical Garden over the past 80 years. We emphasize that Kunming Botanical Garden focuses largely on the ex situ conservation of plants from Southwest China, especially those endangered, endemic, and economically important plant species native to the Yunnan Plateau and the southern Hengduan Mountains. We also discuss the future chal- lenges and responsibilities of botanical gardens in a changing world, including: the negative effects of outbreeding and/or inbreeding depression; promoting awareness, study, and conservation of plant species diversity; accelerating global access to information about plant diversity; increasing capacity building and training activities. We hope this minireview can promote understanding of the role of botanical gardens.展开更多
Magnetic clouds(MCs) frequently show abnormal high-ionization states of heavy ions. The abnormal high-charge distributions are related to the coronal temperature of their source regions. We examined the plasma and mag...Magnetic clouds(MCs) frequently show abnormal high-ionization states of heavy ions. The abnormal high-charge distributions are related to the coronal temperature of their source regions. We examined the plasma and magnetic field data of 74 MCs observed by the Advanced Composition Explorer from February 1998 to December 2008. We determined that 14 of the 74 events showed local high-temperature phenomena. We analyzed the correlation between proton temperature and O7/O6ratio(or high mean Fe charge state ?Fe?) within the local high-temperature regions in the 14 MCs. Results show that proton temperature and O7/O6 ratio(or high mean Fe charge state) had good correlations in nine MCs, but had no evident correlation in the other five MCs. The local high-temperature phenomena within the nine MCs have resulted from the Sun.展开更多
基金Support for this study was provided by grants from the NSFCYunnan joint fund to support key projects(Grant no.U1602264)the Young Academic and Technical Leader Raising Foundation of Yunnan Province(2015HB091)to G.Chenthe Ministry of Science and Technology of China granted funding for a National Key Programme of China:Survey and Germplasm Conservation of PSESP in Southwest China(2017FY100100)to W.B.Sun
文摘Plant diversity is currently being lost at an unprecedented rate, resulting in an associated decrease in ecosystem services. About a third of the world's vascular plant species face the threat of extinction due to a variety of devastating activities, including, over-harvesting and over exploitation, destructive agricul- tural and forestry practices, urbanization, environmental pollution, land-use changes, exotic invasive species, global climate change, and more. We therefore need to increase our efforts to develop integrative conservation approaches for plant species conservation. Botanical gardens devote their resources to the study and conservation of plants, as well as making the world's plant species diversity known to the public. These gardens also play a central role in meeting human needs and providing well-being. In this minireview, a framework for the integrated missions of botanical gardens, including scientific research, inJex situ conservation, plant resource utilization, and citizen science are cataloged. By reviewing the history of the development of Kunming Botanical Garden, we illustrate successful species conservation approaches (among others, projects involving Camellia, Rhododendron, Magnolia, Begonia, Alliurn, Ne- penthes, medicinal plants, ornamental plants, and Plant Species with Extreme Small Populations), as well as citizen science, and scientific research at Kunming Botanical Garden over the past 80 years. We emphasize that Kunming Botanical Garden focuses largely on the ex situ conservation of plants from Southwest China, especially those endangered, endemic, and economically important plant species native to the Yunnan Plateau and the southern Hengduan Mountains. We also discuss the future chal- lenges and responsibilities of botanical gardens in a changing world, including: the negative effects of outbreeding and/or inbreeding depression; promoting awareness, study, and conservation of plant species diversity; accelerating global access to information about plant diversity; increasing capacity building and training activities. We hope this minireview can promote understanding of the role of botanical gardens.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41274180 & 41231068)the Program for Science and Technology Innovation Research Team in University of Henan Province (Grant No. 13IRTSTHN020)
文摘Magnetic clouds(MCs) frequently show abnormal high-ionization states of heavy ions. The abnormal high-charge distributions are related to the coronal temperature of their source regions. We examined the plasma and magnetic field data of 74 MCs observed by the Advanced Composition Explorer from February 1998 to December 2008. We determined that 14 of the 74 events showed local high-temperature phenomena. We analyzed the correlation between proton temperature and O7/O6ratio(or high mean Fe charge state ?Fe?) within the local high-temperature regions in the 14 MCs. Results show that proton temperature and O7/O6 ratio(or high mean Fe charge state) had good correlations in nine MCs, but had no evident correlation in the other five MCs. The local high-temperature phenomena within the nine MCs have resulted from the Sun.