In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second sche...In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.展开更多
Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the ...Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the known channel state information, pre-coding matrix is designed to pre-process the in-phase and quadrature signals of quadrature spatial modulation(QSM) to reduce the inter-channel interference. In order to lower the complexity at the receiver brought by the orthogonality of the PQSM system, an orthogonal matching pursuit(OMP) detection algorithm and a reconstructed model are proposed. The analysis and simulation results show that the proposed algorithm can obtain a similar bit error rate(BER) performance as the maximum likelihood(ML) detection algorithm with more than 80% reduction of complexity.展开更多
Recently, a genuine six-qubit entangled state Isix) has been proposed [Chen P X, et al. Phys Rev A, 2006, 74: 032324]. This state does not belong to the well-known three types of multipartite entangled states, i.e.,...Recently, a genuine six-qubit entangled state Isix) has been proposed [Chen P X, et al. Phys Rev A, 2006, 74: 032324]. This state does not belong to the well-known three types of multipartite entangled states, i.e., Greenberger-Home-Zeilinger (GHZ) state, W state, and linear cluster state. This state has many potential applications in quantum information processing. We pro- pose a scheme for generating such a genuine six-qubit entangled state for trapped ions in thermal motion. The scheme is insen- sitive to both the initial motional state and heating.展开更多
文摘In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.
基金partially supported by the National Natural Science Foundation of China (Grant No. 61701063)Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1600435)
文摘Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the known channel state information, pre-coding matrix is designed to pre-process the in-phase and quadrature signals of quadrature spatial modulation(QSM) to reduce the inter-channel interference. In order to lower the complexity at the receiver brought by the orthogonality of the PQSM system, an orthogonal matching pursuit(OMP) detection algorithm and a reconstructed model are proposed. The analysis and simulation results show that the proposed algorithm can obtain a similar bit error rate(BER) performance as the maximum likelihood(ML) detection algorithm with more than 80% reduction of complexity.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61071025 and 61172047)the Important Program of Hunan Provincial Education Department (Grant No. 06A038)+1 种基金Department of Education of Hunan Province (Grant No. 06C080)Hunan Provincial Natural Science Foundation, China (Grant No. 07JJ3013)
文摘Recently, a genuine six-qubit entangled state Isix) has been proposed [Chen P X, et al. Phys Rev A, 2006, 74: 032324]. This state does not belong to the well-known three types of multipartite entangled states, i.e., Greenberger-Home-Zeilinger (GHZ) state, W state, and linear cluster state. This state has many potential applications in quantum information processing. We pro- pose a scheme for generating such a genuine six-qubit entangled state for trapped ions in thermal motion. The scheme is insen- sitive to both the initial motional state and heating.