Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on th...Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background flow field and simulated the path transition of the WBC due to mesoscale eddies. Our simulations indicated that either an anticyclonic or cyclonic eddy can lead to path transition of the WBC with different modes. The simulation results also show that the mesoscale eddies can lead to path transition of the WBC from loop and eddy shedding state to leaping state because of the hysteresis effect. The leaping state is relatively stable compared with the mesoscale eddies. Moreover, an anticyclonic eddy is more effective in producing the WBC path transition for the path transition than a cyclonic eddy. Our results may help to explain some phenomena observed regarding the path transition of the Kuroshio due to the mesoscale eddies at the Luzon Strait.展开更多
This paper investigates a multi-period mean-variance portfolio selection with regime switching and uncertain exit time. The returns of assets all depend on the states of the stochastic market which are assumed to foll...This paper investigates a multi-period mean-variance portfolio selection with regime switching and uncertain exit time. The returns of assets all depend on the states of the stochastic market which are assumed to follow a discrete-time Markov chain. The authors derive the optimal strategy and the efficient frontier of the model in closed-form. Some results in the existing literature are obtained as special cases of our results.展开更多
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX1-YW-12, KZCX2-YW-201)the National Natural Science Foundation of China (No. 90411013)the National High Technology Research and Development Program (863 Program) of China (No. 2007AA092201)
文摘Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background flow field and simulated the path transition of the WBC due to mesoscale eddies. Our simulations indicated that either an anticyclonic or cyclonic eddy can lead to path transition of the WBC with different modes. The simulation results also show that the mesoscale eddies can lead to path transition of the WBC from loop and eddy shedding state to leaping state because of the hysteresis effect. The leaping state is relatively stable compared with the mesoscale eddies. Moreover, an anticyclonic eddy is more effective in producing the WBC path transition for the path transition than a cyclonic eddy. Our results may help to explain some phenomena observed regarding the path transition of the Kuroshio due to the mesoscale eddies at the Luzon Strait.
基金This research is supported by the National Science Foundation for Distinguished Young Scholars under Grant No. 70825002, the National Natural Science Foundation of China under Grant No. 70518001, and the National Basic Research Program of China 973 Program, under Grant No. 2007CB814902.
文摘This paper investigates a multi-period mean-variance portfolio selection with regime switching and uncertain exit time. The returns of assets all depend on the states of the stochastic market which are assumed to follow a discrete-time Markov chain. The authors derive the optimal strategy and the efficient frontier of the model in closed-form. Some results in the existing literature are obtained as special cases of our results.