This study focused on the identification of the filamentous fungi associated with soapstone samples exposed to outdoor conditions and the biocidal effect of gamma radiations on isolated fungal populations in Minas Ger...This study focused on the identification of the filamentous fungi associated with soapstone samples exposed to outdoor conditions and the biocidal effect of gamma radiations on isolated fungal populations in Minas Gerais State in Brazil. Two soapstone blocks were placed outdoors under tropical environmental conditions for 12 months. A total of 9 filamentous fungal populations were identified on their surfaces, namely Acremomium (cf.) alternatum, Alternaria alternata, Aspergillusfumigatus, Calcarisporium (cf.) arbuscula, Cladosporium cladosporioides, Curvularia lunata, Epicoccum nigrum, Fusarium equiseti and Penicillium citrinum. The gamma radiation assay was then carried out as a test of biocidal action by exposing all fungal populations to the ionizing radiation. The results showed that only the C. cladosporioides species was resistant to this biocidal agent, since it was able to increase its population post exposure. Scanning electron microscopy images identified the microbial colonization on the soapstone blocks and the stone elementar composition was analyzed by energy dispersive X-ray spectrometry. After treatment, there was no structural and aesthetic alteration in the soapstone samples, and evidencing that gamma radiation can be used as a biocidal agent. However, the resistance of the black fungal population indicates caution in the choice of gamma irradiation as biocidal treatment.展开更多
In this paper,characteristics of flow and convective heat transfer of China RP-3 kerosene in straight circular pipe were numerically studied.Navier-Stokes equations were solved using RNG k-turbulence model with low Re...In this paper,characteristics of flow and convective heat transfer of China RP-3 kerosene in straight circular pipe were numerically studied.Navier-Stokes equations were solved using RNG k-turbulence model with low Reynolds number correction.The thermophysical and transport properties of the China RP-3 kerosene were calculated with a 10-species surrogate and the extended corresponding state method(ECS) combined with Benedict-Webb-Rubin equation.The independence of grids was first studied and the numerical results were then compared with experimental data for validation.Under flow conditions given in the paper,the results show that deterioration of convective heat transfer occurs when the wall temperature is slightly higher than the pseudo-critical temperature of kerosene for cases with wall heat flux of 1.2 and 0.8 MW/m 2.The degree of the heat transfer deterioration is weakened as the heat flux decreases.The deterioration,however,does not happen when the heat flux on the pipe wall is reduced to 0.5 MW/m 2.Based on the analysis of the near-wall turbulent properties,it is found that the heat transfer deterioration and then the enhancement are attributed partly to the change in the turbulent kinetic energy in the vicinity of pipe wall.The conventional heat transfer relations such as Sieder-Tate and Gnielinski formulas can be used for the estimation of kerosene heat convection under subcritical conditions,but they are not capable of predicting the phenomenon of heat transfer deterioration.The modified Bae-Kim formula can describe the heat transfer deterioration.In addition,the frictional drag would increase dramatically when the fuel transforms to the supercritical state.展开更多
文摘This study focused on the identification of the filamentous fungi associated with soapstone samples exposed to outdoor conditions and the biocidal effect of gamma radiations on isolated fungal populations in Minas Gerais State in Brazil. Two soapstone blocks were placed outdoors under tropical environmental conditions for 12 months. A total of 9 filamentous fungal populations were identified on their surfaces, namely Acremomium (cf.) alternatum, Alternaria alternata, Aspergillusfumigatus, Calcarisporium (cf.) arbuscula, Cladosporium cladosporioides, Curvularia lunata, Epicoccum nigrum, Fusarium equiseti and Penicillium citrinum. The gamma radiation assay was then carried out as a test of biocidal action by exposing all fungal populations to the ionizing radiation. The results showed that only the C. cladosporioides species was resistant to this biocidal agent, since it was able to increase its population post exposure. Scanning electron microscopy images identified the microbial colonization on the soapstone blocks and the stone elementar composition was analyzed by energy dispersive X-ray spectrometry. After treatment, there was no structural and aesthetic alteration in the soapstone samples, and evidencing that gamma radiation can be used as a biocidal agent. However, the resistance of the black fungal population indicates caution in the choice of gamma irradiation as biocidal treatment.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10921062,10902115 and 11172309)
文摘In this paper,characteristics of flow and convective heat transfer of China RP-3 kerosene in straight circular pipe were numerically studied.Navier-Stokes equations were solved using RNG k-turbulence model with low Reynolds number correction.The thermophysical and transport properties of the China RP-3 kerosene were calculated with a 10-species surrogate and the extended corresponding state method(ECS) combined with Benedict-Webb-Rubin equation.The independence of grids was first studied and the numerical results were then compared with experimental data for validation.Under flow conditions given in the paper,the results show that deterioration of convective heat transfer occurs when the wall temperature is slightly higher than the pseudo-critical temperature of kerosene for cases with wall heat flux of 1.2 and 0.8 MW/m 2.The degree of the heat transfer deterioration is weakened as the heat flux decreases.The deterioration,however,does not happen when the heat flux on the pipe wall is reduced to 0.5 MW/m 2.Based on the analysis of the near-wall turbulent properties,it is found that the heat transfer deterioration and then the enhancement are attributed partly to the change in the turbulent kinetic energy in the vicinity of pipe wall.The conventional heat transfer relations such as Sieder-Tate and Gnielinski formulas can be used for the estimation of kerosene heat convection under subcritical conditions,but they are not capable of predicting the phenomenon of heat transfer deterioration.The modified Bae-Kim formula can describe the heat transfer deterioration.In addition,the frictional drag would increase dramatically when the fuel transforms to the supercritical state.