This paper considers the problem of optimal multi-objective trajectory design for autonomous rendezvous. Total velocity cost and relative state robustness of close-looped control are selected as the objective function...This paper considers the problem of optimal multi-objective trajectory design for autonomous rendezvous. Total velocity cost and relative state robustness of close-looped control are selected as the objective functions. Based on relative dynamics equations, the state equations and measurement equations for angles-only relative navigation between spacecraffs are set forth. According to the method of linear covariance analysis, the close-looped control covariance of the true relative state from the reference relative state is analyzed, and the objective functions of relative state robustness are formulated. Considering the total velocity cost and the relative state robustness, the multi-objective optimization algorithm of NSGA-II is employed to solve this multi-impulsive rendezvous problem. Lastly, the validity of the objective functions and the covariance results are demonstrated through 1 00 times Monte Carlo simulation.展开更多
An analytic control protocol of two types of finite dimensional quantum systems is proposed. The system can be driven to an arbitrary target state using cosine classical fields in finite cycles. The control parameters...An analytic control protocol of two types of finite dimensional quantum systems is proposed. The system can be driven to an arbitrary target state using cosine classical fields in finite cycles. The control parameters which are time periods of interaction between systems and control fields in each cycle are connected with the probability amplitudes of target states via trigonometrical functions and can be determined analytically.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10902101)
文摘This paper considers the problem of optimal multi-objective trajectory design for autonomous rendezvous. Total velocity cost and relative state robustness of close-looped control are selected as the objective functions. Based on relative dynamics equations, the state equations and measurement equations for angles-only relative navigation between spacecraffs are set forth. According to the method of linear covariance analysis, the close-looped control covariance of the true relative state from the reference relative state is analyzed, and the objective functions of relative state robustness are formulated. Considering the total velocity cost and the relative state robustness, the multi-objective optimization algorithm of NSGA-II is employed to solve this multi-impulsive rendezvous problem. Lastly, the validity of the objective functions and the covariance results are demonstrated through 1 00 times Monte Carlo simulation.
基金Supported by the National Science Foundation of China under Grant Nos.11075108 and 61374057
文摘An analytic control protocol of two types of finite dimensional quantum systems is proposed. The system can be driven to an arbitrary target state using cosine classical fields in finite cycles. The control parameters which are time periods of interaction between systems and control fields in each cycle are connected with the probability amplitudes of target states via trigonometrical functions and can be determined analytically.