通过改进粒子群算法(particle swarm optimization,PSO)优化长短期记忆神经网络算法(long short-term memory,LSTM)的参数,提出了一种基于改进PSO-LSTM算法的直驱式风电机组运行状态监测方法。首先将数据采集与监控系统(supervisory con...通过改进粒子群算法(particle swarm optimization,PSO)优化长短期记忆神经网络算法(long short-term memory,LSTM)的参数,提出了一种基于改进PSO-LSTM算法的直驱式风电机组运行状态监测方法。首先将数据采集与监控系统(supervisory control and data acquisition,SCADA)采集到的数据利用随机森林的方法进行特征筛选,得到模型的输入参数;其次采用改进PSO-LSTM网络建立有功功率的预测模型,计算出预测值与实际值的残差,根据残差的分布来确实直驱式风电机组的状态;最后利用某风电机组SCADA数据对所提预测模型进行验证分析,结果表明,PSO-LSTM预测模型相比其他三种预测模型,具有较高的预测精度,并在状态异常后最短时间内发出故障警报,保证电场的健康稳定运行。展开更多
随着我国风电产业高速发展,风电机组服役时间延长,故障率和运维成本随之增加。利用人工智能算法对风电大数据进行数据挖掘,实现风电机组的状态监测与故障诊断,对风电产业提质增效具有重要的现实意义,近年来逐渐成为研究热点。文中介绍...随着我国风电产业高速发展,风电机组服役时间延长,故障率和运维成本随之增加。利用人工智能算法对风电大数据进行数据挖掘,实现风电机组的状态监测与故障诊断,对风电产业提质增效具有重要的现实意义,近年来逐渐成为研究热点。文中介绍了风电机组数据采集与监控(Supervisory Control and Data Acquisition, SCADA)系统和振动信号数据的特性,阐述了风电机组状态监测和故障诊断智能算法的框架,归纳总结了相关研究成果,并对风电机组状态监测和故障诊断技术所面临的挑战和发展趋势进行了展望。展开更多
文摘通过改进粒子群算法(particle swarm optimization,PSO)优化长短期记忆神经网络算法(long short-term memory,LSTM)的参数,提出了一种基于改进PSO-LSTM算法的直驱式风电机组运行状态监测方法。首先将数据采集与监控系统(supervisory control and data acquisition,SCADA)采集到的数据利用随机森林的方法进行特征筛选,得到模型的输入参数;其次采用改进PSO-LSTM网络建立有功功率的预测模型,计算出预测值与实际值的残差,根据残差的分布来确实直驱式风电机组的状态;最后利用某风电机组SCADA数据对所提预测模型进行验证分析,结果表明,PSO-LSTM预测模型相比其他三种预测模型,具有较高的预测精度,并在状态异常后最短时间内发出故障警报,保证电场的健康稳定运行。
文摘随着我国风电产业高速发展,风电机组服役时间延长,故障率和运维成本随之增加。利用人工智能算法对风电大数据进行数据挖掘,实现风电机组的状态监测与故障诊断,对风电产业提质增效具有重要的现实意义,近年来逐渐成为研究热点。文中介绍了风电机组数据采集与监控(Supervisory Control and Data Acquisition, SCADA)系统和振动信号数据的特性,阐述了风电机组状态监测和故障诊断智能算法的框架,归纳总结了相关研究成果,并对风电机组状态监测和故障诊断技术所面临的挑战和发展趋势进行了展望。