Research on coke price forecasting is of theoretical and practical signiifcance. Here, the Kalman ifltering algorithm was used to analyze the price of coke. As the only state variable, the historical coke price is sor...Research on coke price forecasting is of theoretical and practical signiifcance. Here, the Kalman ifltering algorithm was used to analyze the price of coke. As the only state variable, the historical coke price is sorted out to build the state space model. The algorithm makes use of innovation composed of the difference between observed and predicted values, and alows us to obtain the optimal estimated value of the coke price via continuous updating and iteration of innovation. Our results show that this algorithm is effective in the ifeld of coke price tracking and forecasting.展开更多
Ethiopian coffee price is highly fluctuated and has significant effect on the economy of the country. Conducting a research on forecasting coffee price has theoretical and practical importance.This study aims at forec...Ethiopian coffee price is highly fluctuated and has significant effect on the economy of the country. Conducting a research on forecasting coffee price has theoretical and practical importance.This study aims at forecasting the coffee price in Ethiopia. We used daily closed price data of Ethiopian coffee recorded in the period 25 June 2008 to 5 January 2017 obtained from Ethiopia commodity exchange(ECX) market to analyse coffee prices fluctuation. Here, the nature of coffee price is non-stationary and we apply the Kalman filtering algorithm on a single linear state space model to estimate and forecast an optimal value of coffee price. The performance of the algorithm for estimating and forecasting the coffee price is evaluated by using root mean square error(RMSE). Based on the linear state space model and the Kalman filtering algorithm, the root mean square error(RMSE) is 0.000016375, which is small enough, and it indicates that the algorithm performs well.展开更多
基金National Natural Science Foundation in China(No.71173141),National Natural Science Foundation in China(No.71373170)development projects in Higher Education Institution of Shanxi Province of China(No.20111312)+1 种基金special funds projects in Higher Education Institution of Shanxi Province of China(No.201246)soft science research project in Shanxi Province of China(No.2013041015-04)
文摘Research on coke price forecasting is of theoretical and practical signiifcance. Here, the Kalman ifltering algorithm was used to analyze the price of coke. As the only state variable, the historical coke price is sorted out to build the state space model. The algorithm makes use of innovation composed of the difference between observed and predicted values, and alows us to obtain the optimal estimated value of the coke price via continuous updating and iteration of innovation. Our results show that this algorithm is effective in the ifeld of coke price tracking and forecasting.
文摘Ethiopian coffee price is highly fluctuated and has significant effect on the economy of the country. Conducting a research on forecasting coffee price has theoretical and practical importance.This study aims at forecasting the coffee price in Ethiopia. We used daily closed price data of Ethiopian coffee recorded in the period 25 June 2008 to 5 January 2017 obtained from Ethiopia commodity exchange(ECX) market to analyse coffee prices fluctuation. Here, the nature of coffee price is non-stationary and we apply the Kalman filtering algorithm on a single linear state space model to estimate and forecast an optimal value of coffee price. The performance of the algorithm for estimating and forecasting the coffee price is evaluated by using root mean square error(RMSE). Based on the linear state space model and the Kalman filtering algorithm, the root mean square error(RMSE) is 0.000016375, which is small enough, and it indicates that the algorithm performs well.