The aim of this paper is to establish a mathematical fundamental of complex duality quantum computers(CDQCs) acting on vector-states(pure states) and operator-states(mixed states),respectively.A CDQC consists of a com...The aim of this paper is to establish a mathematical fundamental of complex duality quantum computers(CDQCs) acting on vector-states(pure states) and operator-states(mixed states),respectively.A CDQC consists of a complex divider,a group of quantum gates represented by unitary operators,or quantum operations represented by completely positive and trace-preserving mappings,and a complex combiner.It is proved that the divider and the combiner of a CDQC are an isometry and a contraction,respectively.It is proved that the divider and the combiner of a CDQC acting on vector-states are dual,and in the finite dimensional case,it is proved that the divider and the combiner of a CDQC acting on operator-states(matrix-states) are also dual.Lastly,the loss of an input state passing through a CDQC is measured.展开更多
This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard componen...This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10571113 and 11171197)the Fundamental Research Funds for the Central Universities (Grant No. GK201002006)
文摘The aim of this paper is to establish a mathematical fundamental of complex duality quantum computers(CDQCs) acting on vector-states(pure states) and operator-states(mixed states),respectively.A CDQC consists of a complex divider,a group of quantum gates represented by unitary operators,or quantum operations represented by completely positive and trace-preserving mappings,and a complex combiner.It is proved that the divider and the combiner of a CDQC are an isometry and a contraction,respectively.It is proved that the divider and the combiner of a CDQC acting on vector-states are dual,and in the finite dimensional case,it is proved that the divider and the combiner of a CDQC acting on operator-states(matrix-states) are also dual.Lastly,the loss of an input state passing through a CDQC is measured.
基金supported by funds from National natural science foundation of China(Grant No.51176004)
文摘This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.