By using scanning tunneling microscopy(STM)/spectroscopy(STS), we systematically characterize the electronic structure of lightly doped 1 T-TiSe_2, and demonstrate the existence of the electronic inhomogeneity and the...By using scanning tunneling microscopy(STM)/spectroscopy(STS), we systematically characterize the electronic structure of lightly doped 1 T-TiSe_2, and demonstrate the existence of the electronic inhomogeneity and the pseudogap state. It is found that the intercalation induced lattice distortion impacts the local band structure and reduce the size of the charge density wave(CDW) gap with the persisted 2 × 2 spatial modulation. On the other hand, the delocalized doping electrons promote the formation of pseudogap. Domination by either of the two effects results in the separation of two characteristic regions in real space, exhibiting rather different electronic structures. Further doping electrons to the surface confirms that the pseudogap may be the precursor for the superconducting gap. This study suggests that the competition of local lattice distortion and the delocalized doping effect contribute to the complicated relationship between charge density wave and superconductivity for intercalated 1 T-TiSe_2.展开更多
基金supported by the Ministry of Science and Technology of China(2014CB921103,2013CB922103,2016YFA0300400,2015CB921202)the National Natural Science Foundation of China(11774149,11374140,11190023,11774152,51372112,11574133)+1 种基金NSF Jiangsu Province(BK20150012)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics
文摘By using scanning tunneling microscopy(STM)/spectroscopy(STS), we systematically characterize the electronic structure of lightly doped 1 T-TiSe_2, and demonstrate the existence of the electronic inhomogeneity and the pseudogap state. It is found that the intercalation induced lattice distortion impacts the local band structure and reduce the size of the charge density wave(CDW) gap with the persisted 2 × 2 spatial modulation. On the other hand, the delocalized doping electrons promote the formation of pseudogap. Domination by either of the two effects results in the separation of two characteristic regions in real space, exhibiting rather different electronic structures. Further doping electrons to the surface confirms that the pseudogap may be the precursor for the superconducting gap. This study suggests that the competition of local lattice distortion and the delocalized doping effect contribute to the complicated relationship between charge density wave and superconductivity for intercalated 1 T-TiSe_2.