This paper proposes a new coordination method for multi-robot system.The state space for a multi-robot system is constructed according to the task requirements and system characteristics.Reachable statefor the system ...This paper proposes a new coordination method for multi-robot system.The state space for a multi-robot system is constructed according to the task requirements and system characteristics.Reachable statefor the system is constrained by the system s internal and external constraints,under which the task isexecutable if there exists a state transition trajectory from the initial to the goal state in its state space.Ifthe task is realizable,the feasible or the optimal strategy for task execution could then be investigated inthe state space.Otherwise,the task could be modified to be realizable via adjusting system s configura-tions and/or task constraints,which provides critical guidance for system reconstructions.This con-tributes to the designing and planning of the robotic tasks.Experiments of multi-robot formation movementare conducted to show the validity of the proposed method.展开更多
The study of damage in rotating machineries is of fundamental interest in the fields of machine and structure design. A rotating system, supported by bearings and under some dynamic conditions, can generate a variety ...The study of damage in rotating machineries is of fundamental interest in the fields of machine and structure design. A rotating system, supported by bearings and under some dynamic conditions, can generate a variety of problems that are encountered in many different types of rotating machines. One of these problems is the unbalance due to non-homogeneous mass distribution along the shaft. One of the techniques which are widespread today is the identification of parameters and excitation forces that may well followed by monitoring the evolution and change of possible variations of these parameters. Although several methods for the identification of unbalance excitation force are available in the literature, none of them can be considered unrestricted to be applied for all rotating systems. In this study, two methodologies to identify unknown excitations, such as unbalance, have been proposed. This project refers to the analysis of unbalanced forces from displacement parameters and speed by using methods of identification by Fourier series and Legendre polynomials together with the finite element method, state observers in reasons of the problem of absence of signs of rotational displacement, bandpass filter were used to noise suppression of the data collected from the experimental part, Quasi-Newton method to minimize a function in which the bearing stiffness and its damping are unknowns, and also the experimental verification of the methodology, using for this system owned by a rotary mechanical vibrations of the Department of Mechanical Engineering of Faculty of Engineering, campus of llha Solteira.展开更多
Generation of wind power time series is an important foundational task for assisting electric power system planning and mak- ing decision. By analyzing the characteristics of wind power persistence and variation, th!....Generation of wind power time series is an important foundational task for assisting electric power system planning and mak- ing decision. By analyzing the characteristics of wind power persistence and variation, th!.s paper proposes an improved Mar- kov chain Monte Carlo (MCMC) method, identified as the PV-MC method, for the direct generation of a synthetic series of wind power output. On the basis of the MCMC method, duration time and variation features are concluded in PV-MC method, gaining a more comprehensive reflection of wind power characteristics in the generated wind power time series. First, the wind power state series is generated to meet the state transition matrix based on the definition of the wind power state. Then, the time duration of each state in the series is determined by its respective duration character. Finally, the variation characteristic is used to convert the state series to a wind power time series. A significant amount of simulations are performed based on the PV-MC and MCMC methods and are then compared for 25 wind farms at 6 different locations throughout the world. The sim- ulation results show that the PV-MC method offers an excellent fit for the time domain features (persistence and variation characteristic) while holding other statistic features (mean value, variance, autocorrelation coefficient (ACC) and probability density function (PDF)) close to the MCMC method.展开更多
Periodic orbits are fundamental keys to understand the dynamical system of circular restricted three-body problem, and they play important roles in practical deep-space exploration. Current methods of periodic orbit c...Periodic orbits are fundamental keys to understand the dynamical system of circular restricted three-body problem, and they play important roles in practical deep-space exploration. Current methods of periodic orbit computation need a high-order analytical approximate solution to start the iteration process, thus making the computation complicated and limiting the types of periodic orbits that can be obtained. By utilizing the symmetry of the restricted three-body problem, a special kind of flow function is constructed, so as to map a state on the plane of symmetry to another state that also lies in this plane. Based on this flow function, a new method of periodic orbit computation is derived. This method needs neither a starting analytic approximation nor the state transition matrix to be computed, so it can be conveniently implemented on a computer. Besides, this method is unaffected by the nonlinearity of the dynamical system, allowing a large set of periodic orbits which have x-z plane symmetry to be computed numerically. As examples, some planar periodic orbits (e.g. Lyapunov orbit) and spatial periodic orbits (e.g. Halo orbit) are computed. By further combining with a differential correction process, the method introduced here can be used to design resonant orbits that can jump between different resonant frequencies. One such resonant orbit is given in this paper, verifying the efficiency of this method.展开更多
The state transfer under control fields is analyzed based on the Bloch sphere representation of a single qubit. In order to achieve the target from an arbitrary initial state to a target state, the conditions that par...The state transfer under control fields is analyzed based on the Bloch sphere representation of a single qubit. In order to achieve the target from an arbitrary initial state to a target state, the conditions that parameters should satisfy are deduced separately in two different requirements: One is in the case of the rotation angle around the x-axis being fixed and another is in the situation with a given evolution time. Several typical states trajectories are demonstrated by numerical simulations on the Bloch sphere. The relations between parameters and the trajectories are analyzed.展开更多
基金Supported by the National Natural Science Foundation for Distinguished Young Scholars Abroad (No. 60428303)
文摘This paper proposes a new coordination method for multi-robot system.The state space for a multi-robot system is constructed according to the task requirements and system characteristics.Reachable statefor the system is constrained by the system s internal and external constraints,under which the task isexecutable if there exists a state transition trajectory from the initial to the goal state in its state space.Ifthe task is realizable,the feasible or the optimal strategy for task execution could then be investigated inthe state space.Otherwise,the task could be modified to be realizable via adjusting system s configura-tions and/or task constraints,which provides critical guidance for system reconstructions.This con-tributes to the designing and planning of the robotic tasks.Experiments of multi-robot formation movementare conducted to show the validity of the proposed method.
文摘The study of damage in rotating machineries is of fundamental interest in the fields of machine and structure design. A rotating system, supported by bearings and under some dynamic conditions, can generate a variety of problems that are encountered in many different types of rotating machines. One of these problems is the unbalance due to non-homogeneous mass distribution along the shaft. One of the techniques which are widespread today is the identification of parameters and excitation forces that may well followed by monitoring the evolution and change of possible variations of these parameters. Although several methods for the identification of unbalance excitation force are available in the literature, none of them can be considered unrestricted to be applied for all rotating systems. In this study, two methodologies to identify unknown excitations, such as unbalance, have been proposed. This project refers to the analysis of unbalanced forces from displacement parameters and speed by using methods of identification by Fourier series and Legendre polynomials together with the finite element method, state observers in reasons of the problem of absence of signs of rotational displacement, bandpass filter were used to noise suppression of the data collected from the experimental part, Quasi-Newton method to minimize a function in which the bearing stiffness and its damping are unknowns, and also the experimental verification of the methodology, using for this system owned by a rotary mechanical vibrations of the Department of Mechanical Engineering of Faculty of Engineering, campus of llha Solteira.
基金supported by the National Natural Science Foundation of China(Grant No.51377027)the National Basic Research Program of China("973"Project)(Grant No.2012CB215104)ABB(China)Ltd
文摘Generation of wind power time series is an important foundational task for assisting electric power system planning and mak- ing decision. By analyzing the characteristics of wind power persistence and variation, th!.s paper proposes an improved Mar- kov chain Monte Carlo (MCMC) method, identified as the PV-MC method, for the direct generation of a synthetic series of wind power output. On the basis of the MCMC method, duration time and variation features are concluded in PV-MC method, gaining a more comprehensive reflection of wind power characteristics in the generated wind power time series. First, the wind power state series is generated to meet the state transition matrix based on the definition of the wind power state. Then, the time duration of each state in the series is determined by its respective duration character. Finally, the variation characteristic is used to convert the state series to a wind power time series. A significant amount of simulations are performed based on the PV-MC and MCMC methods and are then compared for 25 wind farms at 6 different locations throughout the world. The sim- ulation results show that the PV-MC method offers an excellent fit for the time domain features (persistence and variation characteristic) while holding other statistic features (mean value, variance, autocorrelation coefficient (ACC) and probability density function (PDF)) close to the MCMC method.
基金supported by the National Natural Science Foundation of China (Grant No. 60575013)the National Basic Research Program of China (Grant No. G9KY1004)
文摘Periodic orbits are fundamental keys to understand the dynamical system of circular restricted three-body problem, and they play important roles in practical deep-space exploration. Current methods of periodic orbit computation need a high-order analytical approximate solution to start the iteration process, thus making the computation complicated and limiting the types of periodic orbits that can be obtained. By utilizing the symmetry of the restricted three-body problem, a special kind of flow function is constructed, so as to map a state on the plane of symmetry to another state that also lies in this plane. Based on this flow function, a new method of periodic orbit computation is derived. This method needs neither a starting analytic approximation nor the state transition matrix to be computed, so it can be conveniently implemented on a computer. Besides, this method is unaffected by the nonlinearity of the dynamical system, allowing a large set of periodic orbits which have x-z plane symmetry to be computed numerically. As examples, some planar periodic orbits (e.g. Lyapunov orbit) and spatial periodic orbits (e.g. Halo orbit) are computed. By further combining with a differential correction process, the method introduced here can be used to design resonant orbits that can jump between different resonant frequencies. One such resonant orbit is given in this paper, verifying the efficiency of this method.
基金supported in part by the National Science Foundation of China under Grant No.61074050the National Key Basic Research Program under Grant No.2009CB929601
文摘The state transfer under control fields is analyzed based on the Bloch sphere representation of a single qubit. In order to achieve the target from an arbitrary initial state to a target state, the conditions that parameters should satisfy are deduced separately in two different requirements: One is in the case of the rotation angle around the x-axis being fixed and another is in the situation with a given evolution time. Several typical states trajectories are demonstrated by numerical simulations on the Bloch sphere. The relations between parameters and the trajectories are analyzed.