期刊文献+
共找到117篇文章
< 1 2 6 >
每页显示 20 50 100
基于状态频率记忆神经网络的短时交通流预测 被引量:2
1
作者 余敬柳 陈鹏 谢静敏 《武汉理工大学学报(交通科学与工程版)》 2020年第4期733-737,共5页
短时交通流预测在智能交通系统中起到重要的作用.针对交通流时间序列,提出了一种基于状态频率记忆神经网络的短时交通流预测模型.该模型将交通流信息分解为状态和频率两个维度作为记忆单元进行建模,根据预测时间间隔的时长将历史交通流... 短时交通流预测在智能交通系统中起到重要的作用.针对交通流时间序列,提出了一种基于状态频率记忆神经网络的短时交通流预测模型.该模型将交通流信息分解为状态和频率两个维度作为记忆单元进行建模,根据预测时间间隔的时长将历史交通流数据汇总,采用小波分析对历史交通流数据去噪并进行归一化处理,将其分为训练集、验证集以及测试集,最终构建短时交通流预测模型.本文以合肥市某交叉口为例,运用状态频率记忆神经网络预测该交叉口的短时交通流,并与其他预测方法的预测结果进行比较.结果表明:状态频率记忆神经网络预测短时交通流的精度更高,验证了预测模型的有效性. 展开更多
关键词 智能交通 短时交通流 状态频率记忆神经网络 预测
下载PDF
基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估
2
作者 衣思彤 刘雅浓 +2 位作者 马耀浥 李文婕 孔航 《电气技术》 2024年第5期1-10,21,共11页
准确估计电池健康状态是设备稳定运行的关键。针对当前健康状态研究中容量难以直接测量、估计模型调参费时等问题,提出基于多健康特征的贝叶斯优化(BO)算法优化卷积神经网络(CNN)与双向长短期记忆(BiLSTM)神经网络预测模型。基于NASA公... 准确估计电池健康状态是设备稳定运行的关键。针对当前健康状态研究中容量难以直接测量、估计模型调参费时等问题,提出基于多健康特征的贝叶斯优化(BO)算法优化卷积神经网络(CNN)与双向长短期记忆(BiLSTM)神经网络预测模型。基于NASA公开锂电池数据,提取3种健康特征。将CNN与BiLSTM结合,提高时间序列数据处理能力,加入BO算法自动搜寻最优参数集,避免组合网络模型陷入局部最优,从而减少评估时间。对比分析相关神经网络模型,结果表明所提方法预测准确度最高,可有效估计锂电池的健康状态,平均绝对误差和方均根误差均在1%以内。 展开更多
关键词 锂电池 健康状态(SOH) 贝叶斯优化(BO)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)神经网络
下载PDF
阀控液压马达位置伺服系统长短时记忆神经网络预测抗扰反步控制
3
作者 柴凌云 栾海英 +2 位作者 刘增元 沈洲 任翔 《液压与气动》 北大核心 2024年第8期128-136,共9页
针对阀控液压马达位置伺服系统中存在的时滞性与摩擦非线性问题,设计了一种长短时记忆神经网络预测抗扰反步控制器。该控制器通过引入长短时记忆神经网络对当前位置轨迹进行预测,并将预测值反馈给控制器对系统时滞进行直接补偿。对于系... 针对阀控液压马达位置伺服系统中存在的时滞性与摩擦非线性问题,设计了一种长短时记忆神经网络预测抗扰反步控制器。该控制器通过引入长短时记忆神经网络对当前位置轨迹进行预测,并将预测值反馈给控制器对系统时滞进行直接补偿。对于系统中难以建模的摩擦非线性,将其视为扰动,通过设计扩张状态观测器进行估测,并使用反步法对估测得到的总扰动进行补偿。最后,在Simulink中搭建长短时记忆神经网络预测抗扰反步控制算法进行仿真验证,并与径向基函数滑模控制算法、反步控制算法和自抗扰控制算法进行对比,证明其在对含有时滞及摩擦非线性的阀控液压马达位置伺服系统进行控制时,具有较快的响应速度及较好的跟踪性能。 展开更多
关键词 阀控液压马达位置系统 长短时记忆神经网络 反步控制 扩张状态观测器
下载PDF
基于注意力机制及长短期记忆神经网络的慢性阻塞性肺疾病氧减状态辨识 被引量:3
4
作者 吴月芳 胡明昕 孙培莉 《南京理工大学学报》 CAS CSCD 北大核心 2023年第5期629-635,共7页
为提高慢性阻塞性肺疾病氧减状态的辨识性能,该文将注意力机制有效融入长短期记忆神经网络,提出了一种基于注意力机制的长短期记忆神经网络方法:首先,抽取每个待辨识状态点的四种有效鉴别特征,包括血脉氧饱和度指数、脉搏、血脉氧饱和... 为提高慢性阻塞性肺疾病氧减状态的辨识性能,该文将注意力机制有效融入长短期记忆神经网络,提出了一种基于注意力机制的长短期记忆神经网络方法:首先,抽取每个待辨识状态点的四种有效鉴别特征,包括血脉氧饱和度指数、脉搏、血脉氧饱和度指数的窗口特征以及梯度特征;其次,在此特征表示的基础上,通过引入注意力机制,使用训练集来训练基于注意力机制的长短期记忆神经网络;最后,使用测试集来验证所训练模型的有效性。与多个经典机器学习算法的对比实验结果表明:所提出的基于注意力机制的长短期记忆神经网络方法的辨识模型能够准确识别氧减状态,全局性能指标曲线下面积达到了0.8531。所提方法对于慢性阻塞性肺疾病的准确诊断具有重要的参考价值。 展开更多
关键词 特征表示 注意力机制 长短期记忆神经网络 慢性阻塞性肺疾病 氧减状态辨识
下载PDF
基于一维卷积神经网络与长短期记忆网络结合的电池荷电状态预测方法 被引量:14
5
作者 倪水平 李慧芳 《计算机应用》 CSCD 北大核心 2021年第5期1514-1521,共8页
针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNNLSTM模型。1D CNN-LSTM模型将电池的电流... 针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNNLSTM模型。1D CNN-LSTM模型将电池的电流、电压和电阻映射到目标值SOC。首先,通过一层一维卷积层从样本数据中提取出高级数据特征,并充分地利用输入数据的特征信息;其次,使用一层LSTM层保存历史输入信息,从而有效地预防重要信息的丢失;最后,通过一层全连接层输出电池SOC预测结果。使用电池的多次循环充放电实验数据训练提出的模型,分析对比不同超参数设置下1D CNN-LSTM模型的预测效果,并通过训练模型来调节模型的权重系数和偏置参数,从而确定最优的模型设置。实验结果表明,1D CNN-LSTM模型具有准确且稳定的电池SOC预测效果。该模型的平均绝对误差(MAE)、均方误差(MSE)和最大预测误差分别为0.402 7%、0.002 9%和0.99%。 展开更多
关键词 一维卷积神经网络 循环神经网络 长短期记忆 荷电状态预测 电池
下载PDF
基于长短期记忆神经网络的健康状态估算 被引量:1
6
作者 肖仁鑫 宋新月 +2 位作者 张梦帆 夏雪磊 肖佳鹏 《农业装备与车辆工程》 2020年第4期77-81,共5页
当前电池健康状态估算与预测在处理大量电池数据、时间间隔较长存在一定缺陷。长短期记忆神经网络算法在解决该问题时效果明显。在完成电池循环充放电实验基础之上,分析和提取电池放电过程中外部信号变化的特征指标,以电池放电数据中放... 当前电池健康状态估算与预测在处理大量电池数据、时间间隔较长存在一定缺陷。长短期记忆神经网络算法在解决该问题时效果明显。在完成电池循环充放电实验基础之上,分析和提取电池放电过程中外部信号变化的特征指标,以电池放电数据中放电容量、放电时间、循环次数训练并建立了长短期记忆神经网络预测模型,采用3种不同的自适应学习率优化算法对学习训练部分进行优化,最后对比分析模型预测的准确程度。结果表明,长短期记忆神经网络估算电池健康状态的误差小于5%,证明预测模型的有效性。 展开更多
关键词 锂离子电池 健康状态 长短期记忆神经网络算法 学习率优化
下载PDF
复值多状态双向联想记忆神经网络 被引量:2
7
作者 许志雄 郑承义 +1 位作者 叶臻 谢铭培 《电子学报》 EI CAS CSCD 北大核心 1999年第5期118-120,共3页
离散但非二值状态将提供一种更好的信息表达方式.本论文中,我们将复符号操作子(complexsignumoperation)和双向联想记忆(BidirectionalAsociativeMemory,BAM)结合起来... 离散但非二值状态将提供一种更好的信息表达方式.本论文中,我们将复符号操作子(complexsignumoperation)和双向联想记忆(BidirectionalAsociativeMemory,BAM)结合起来并提出了一种非二值BAM,即复值多状态双向联想记忆神经网络(ComplexValuedMultistateBidirectionalAsociativeMemory,CVMBAM).在我们提出的编码体系下,证明了此复值多状态双向联想记忆神经网络是稳定的,无论其连接权矩阵如何. 展开更多
关键词 复值多状态 双向联想记忆 CVMBAM 神经网络
下载PDF
基于长短期记忆神经网络的矢量跟踪通道状态监测算法 被引量:2
8
作者 朱震曙 吴盘龙 +1 位作者 薄煜明 朱建良 《数据采集与处理》 CSCD 北大核心 2020年第1期181-187,共7页
卫星导航系统接收机分为标量跟踪架构和矢量跟踪架构。矢量跟踪接收机的特点是采用一种中心导航滤波器实现所有通道信息的集中处理,这样可以充分利用通道之间的共享信息,提升接收机的性能。但由此带来的问题是通道之间的相互影响,当某... 卫星导航系统接收机分为标量跟踪架构和矢量跟踪架构。矢量跟踪接收机的特点是采用一种中心导航滤波器实现所有通道信息的集中处理,这样可以充分利用通道之间的共享信息,提升接收机的性能。但由此带来的问题是通道之间的相互影响,当某个通道的信号被遮挡或者信号较弱时,会影响导航滤波器的正常工作,因此需要进行通道运行状态的监测。本文提出一种基于长短期记忆神经网络的通道状态监测方法,将通道的信息序列值作为神经网络的输入向量。仿真结果表明,本文提出的方法能够有效地检测故障,保证矢量跟踪接收机的定位精度。 展开更多
关键词 卫星导航 矢量跟踪 长短期记忆神经网络 状态监测
下载PDF
联合长短期记忆神经网络和粒子滤波的配电网预测辅助鲁棒状态估计方法 被引量:17
9
作者 夏添梁 张玉敏 +3 位作者 杨明 吉兴全 尹孜阳 张旋 《高电压技术》 EI CAS CSCD 北大核心 2022年第4期1343-1355,共13页
针对配电系统状态估计(distribution network state estimation,DNSE)中量测数据存在非高斯噪声、异常以及缺失的关键问题,提出了一种联合长短期记忆神经网络(long short term memory,LSTM)和粒子滤波(particle filter,PF)的配电网预测... 针对配电系统状态估计(distribution network state estimation,DNSE)中量测数据存在非高斯噪声、异常以及缺失的关键问题,提出了一种联合长短期记忆神经网络(long short term memory,LSTM)和粒子滤波(particle filter,PF)的配电网预测辅助鲁棒状态估计方法(robust forecasting-aided state estimation,FASE),以实现对配电网运行状态的实时动态估计。基于配电系统的历史运行数据建立了深层LSTM预测模型,采用改进的PF构建量测和状态之间的非线性模型。针对量测缺失或异常问题,采用孤立森林异常检测技术准确识别量测信息中的异常数据。基于此,结合深层LSTM预测值经潮流计算(powerflowcalculation,PFC)得到的伪量测可实现对缺失和异常数据的替换。此外,提出的联合长短期记忆神经网络和粒子滤波的电力系统预测辅助状态估计方法(longshortterm memory-particlefilter,LSTM-PF)可以实现对拓扑结构改变后的节点状态的预测和估计。对IEEE33节点标准配电网和某市10 kV 78节点实际配电网测试系统进行了数值仿真,仿真结果表明LSTM-PF算法具有较高的精度和鲁棒性,可为配电网状态估计提供参考。 展开更多
关键词 数据驱动 粒子滤波 孤立森林算法 预测辅助状态估计 长短期记忆神经网络
下载PDF
基于灰色关联度分析-长短期记忆神经网络的锂离子电池健康状态估计 被引量:21
10
作者 周才杰 汪玉洁 +1 位作者 李凯铨 陈宗海 《电工技术学报》 EI CSCD 北大核心 2022年第23期6065-6073,共9页
电池的健康状态是电池健康管理的核心,准确的锂离子电池健康状态估计对保证电池安全、可靠、长寿命运行具有重要意义。为此,该文提出了一种基于增量容量曲线和灰色关联度分析(GRA)以及长短期记忆(LSTM)神经网络的锂离子电池健康状态估... 电池的健康状态是电池健康管理的核心,准确的锂离子电池健康状态估计对保证电池安全、可靠、长寿命运行具有重要意义。为此,该文提出了一种基于增量容量曲线和灰色关联度分析(GRA)以及长短期记忆(LSTM)神经网络的锂离子电池健康状态估计方法。该方法通过分析电池在老化过程中的充电增量容量曲线变化模式,提取电池老化特征。为了降低计算复杂度,引入灰色关联度分析法进行特征分析与筛选,并将其作为长短时间记忆神经网络的输入,进行网络预训练进而估计电池的健康状态。最后,利用三种不同工况的电池加速老化测试数据集对所提出的健康状态估计方法进行了验证。实验结果表明,所提出的方法表现出优秀的电池健康状态估计性能,并在不同工况以及不同训练循环周期数条件下表现出良好的鲁棒性。 展开更多
关键词 锂离子电池 健康状态估计 增量容量曲线 灰色关联度分析 长短期记忆神经网络
下载PDF
基于注意力机制的混合神经网络电力设备缺陷文本挖掘方法 被引量:13
11
作者 王宣军 于虹 +1 位作者 祁兵 李彬 《电力信息与通信技术》 2023年第9期44-51,共8页
电网在运行过程中会产生大量的设备缺陷文本记录,针对变电设备缺陷文本的特点,文章提出了基于注意力机制的混合神经网络(hybrid neural network based on attention mechanism,HNNA)电力设备缺陷文本挖掘方法。首先在总结电力设备缺陷... 电网在运行过程中会产生大量的设备缺陷文本记录,针对变电设备缺陷文本的特点,文章提出了基于注意力机制的混合神经网络(hybrid neural network based on attention mechanism,HNNA)电力设备缺陷文本挖掘方法。首先在总结电力设备缺陷文本特点的基础上,参考中文文本分类的一般流程,结合自主编写的词典和停用词表对缺陷文本进行预处理;利用Word2vec模型将词语映射到高维空间;使用卷积神经网络(convolution neural network,CNN)和双向长短期记忆网络(bidirectional long short term memory,BiLSTM)提取文本局部特征和上下文特征;将提取的特征进行融合,最后采用Attention实现特征权重的分配,增强关键特征对分类效果的影响,并从多个评价维度与传统机器学习模型、深度学习模型对比。算例结果表明,提出的模型具有更好的分类效果,可以实现电力设备缺陷等级的高效准确划分。 展开更多
关键词 注意力机制 卷积神经网络 双向长短期记忆网络 混合神经网络 状态评价
下载PDF
基于Adam优化算法和长短期记忆神经网络的锂离子电池荷电状态估计方法 被引量:14
12
作者 潘锦业 王苗苗 +1 位作者 阚威 高永峰 《电气技术》 2022年第4期25-30,36,共7页
锂离子电池是电动汽车、无人机及电力电子设备的储能系统组件,对其进行准确的荷电状态(SOC)估计对于正确决策、安全控制和维护具有重要意义。针对锂离子电池SOC估计问题,本文采用长短期记忆(LSTM)神经网络搭建锂离子电池SOC估计模型,将... 锂离子电池是电动汽车、无人机及电力电子设备的储能系统组件,对其进行准确的荷电状态(SOC)估计对于正确决策、安全控制和维护具有重要意义。针对锂离子电池SOC估计问题,本文采用长短期记忆(LSTM)神经网络搭建锂离子电池SOC估计模型,将电池电压、电流、温度作为输入,建立多层LSTM预测模型,采用Adam优化算法与Dropout正则化方法完成LSTM模型的训练。测试结果表明,在模型训练过程中加入Adam优化算法与Dropout正则化方法,使模型对实验数据集的非线性和初始荷电状态的不确定性具有鲁棒性。 展开更多
关键词 锂离子电池 长短期记忆(LSTM)神经网络 Adam优化算法 荷电状态(SOC)估计
下载PDF
双层循环神经网络框架下的USV路径规划方法
13
作者 张志鑫 高健 赵大威 《应用科技》 CAS 2023年第3期100-107,共8页
针对全连接神经网络结构下Actor-Critic算法在复杂路径规划环境下训练时间长、不宜收敛且难以处理长动作记忆序列的不足,本文提出了基于双层循环神经网络的水面无人艇(unmanned surface vessel,USV)路径规划算法。该算法的输入并不是单... 针对全连接神经网络结构下Actor-Critic算法在复杂路径规划环境下训练时间长、不宜收敛且难以处理长动作记忆序列的不足,本文提出了基于双层循环神经网络的水面无人艇(unmanned surface vessel,USV)路径规划算法。该算法的输入并不是单独的一个状态,而是由状态、动作和奖励所组成的具有一定长度的序列(宏动作)。从网络架构上来看,循环神经网络(recurrent neural network,RNN)会记住历史信息,并且使用历史信息影响当前的输入输出,基于RNN结构的双层循环神经网络(double-layer recurrent neural network,DRNN)也具有同样的性质,由于DRNN考虑了一定时间内的环境交互历史,有助于神经网络对于连续动作序列(宏动作)模式的识别。通过仿真实验,在多个地图上与常规的Actor-Critic算法进行对比验证。结果表明:该算法在平均步数、成功率与平均奖励上比Actor-Critic算法有明显提高。 展开更多
关键词 全连接神经网络 路径规划 循环神经网络 记忆序列 宏动作 双层网络架构 状态 历史信息
下载PDF
基于状态频率记忆网络的家庭短期电力负荷预测
14
作者 卜祥国 赖波 周后盘 《现代电力》 北大核心 2023年第1期67-72,共6页
家庭的短期电力负荷预测在智能电网中发挥着越来越重要的作用,为了进一步提高预测的精度,提出了一种基于状态频率记忆网络的家庭短期电力负荷预测模型。首先采用K均值聚类方法,将具有相同用电模式的家庭归为一类;随后采用小波降噪技术... 家庭的短期电力负荷预测在智能电网中发挥着越来越重要的作用,为了进一步提高预测的精度,提出了一种基于状态频率记忆网络的家庭短期电力负荷预测模型。首先采用K均值聚类方法,将具有相同用电模式的家庭归为一类;随后采用小波降噪技术对负荷数据进行降噪处理;最后构建状态频率记忆网络模型进行批量的家庭负荷预测。该模型通过引入离散傅里叶变换将记忆状态分解为多个频率分量,并通过这些频率成分的组合来预测未来的用电量。使用均方误差、均方根误差和平均绝对误差来评估模型,与该领域上性能表现最好的长短期记忆模型相比较,文中的模型在未来一天的负荷预测中,3类误差分别降低了21.6%、11.4%、15.4%,充分验证了模型的有效性。 展开更多
关键词 电力负荷预测 状态频率记忆网络 小波降噪 K均值 离散傅里叶变化
下载PDF
中立型时变时滞BAM神经网络状态估计器的设计
15
作者 刘佳 张运喜 《天津职业技术师范大学学报》 2016年第1期58-62,共5页
基于Lyapunov-Krasovskii稳定性理论和积分等式的方法,给出闭环误差系统全局渐近稳定的时滞依赖充分条件,进一步得到状态估计器增益矩阵的表示方法,从而完成对中立型时变时滞BAM神经网络状态估计器的设计,通过仿真算例验证了所得结论的... 基于Lyapunov-Krasovskii稳定性理论和积分等式的方法,给出闭环误差系统全局渐近稳定的时滞依赖充分条件,进一步得到状态估计器增益矩阵的表示方法,从而完成对中立型时变时滞BAM神经网络状态估计器的设计,通过仿真算例验证了所得结论的正确性和有效性。 展开更多
关键词 双向联想记忆(BAM)神经网络 状态估计器 LYAPUNOV-KRASOVSKII泛函 时变时滞 中立型
下载PDF
基于LSTM神经网络的锂离子电池荷电状态估算 被引量:22
16
作者 明彤彤 王凯 +2 位作者 田冬冬 徐松 田浩含 《广东电力》 2020年第3期26-33,共8页
针对锂离子电池荷电状态(state of charge, SOC)预测问题,采用长短期记忆循环神经网络(long short-term memory, LSTM)搭建电池SOC预测模型。利用直流电子负载对18650锂离子电池进行多工况放电,将电池电压、放电电流作为模型输入。将采... 针对锂离子电池荷电状态(state of charge, SOC)预测问题,采用长短期记忆循环神经网络(long short-term memory, LSTM)搭建电池SOC预测模型。利用直流电子负载对18650锂离子电池进行多工况放电,将电池电压、放电电流作为模型输入。将采集数据分为训练集、验证集和测试集,在训练集上训练模型,在验证集上调节模型超参数,在测试集上测试模型性能。采用带动量的随机梯度下降(stochastic gradient descent, SGD)进行权重更新,并加入Dropout正则化方法。在动态放电情况下,使用所提方法预测电池SOC最大绝对误差为2.0%,平均绝对误差为1.05%,验证了该方法的可行性。测试结果表明,在模型训练过程中加入Dropout正则化方法,可以有效降低网络的过拟合现象,增强模型的泛化能力。 展开更多
关键词 锂离子电池 荷电状态 电动汽车 长短期记忆 循环神经网络
下载PDF
基于改进的长短期记忆神经网络方言辨识模型 被引量:5
17
作者 艾虎 李菲 《科学技术与工程》 北大核心 2019年第2期163-169,共7页
在案件侦破中,方言的辨别能提供重要线索。为了对汉语方言进行辨别,基于长短期记忆神经网络(LSTM)的方言辨识模型被提出,语音样本数据,其中包括地区口头禅,均采集于贵州省6个地区,并提取梅尔频率倒谱系数(MFCC),每份语音样本MFCC后面加... 在案件侦破中,方言的辨别能提供重要线索。为了对汉语方言进行辨别,基于长短期记忆神经网络(LSTM)的方言辨识模型被提出,语音样本数据,其中包括地区口头禅,均采集于贵州省6个地区,并提取梅尔频率倒谱系数(MFCC),每份语音样本MFCC后面加上相应的地区口头禅MFCC,然后采用滑窗进行信息重叠分块,对每块分别进行横向与纵向奇异值分解并保留高贡献率的特征向量,把分块合并作为方言辨识模型的输入数据。先对LSTM进行改进,然后构建方言辨识模型。通过交叉实验对该模型进行训练和验证,从而对滑窗的宽度进行优化,同时与循环神经网络(RNN)进行比较。实验结果证明研究构建的LSTM模型对汉语方言辨识是高效的。 展开更多
关键词 汉语方言辨识 梅尔频率倒谱系数 地区口头禅 奇异值分解 长短期记忆神经网络
下载PDF
基于DRSN-CW-LSTM网络的锂电池荷电状态预测
18
作者 王小聪 郝正航 陈卓 《南方电网技术》 CSCD 北大核心 2024年第2期106-114,共9页
由于电池荷电状态(state of charge,SOC)无法直接测量,且传统的SOC估算方法精度低。为了提升锂离子电池SOC估算精度,对比了不同深度学习网络模型应用于SOC估算的效果,并提出了一种基于DRSN-CW-LSTM网络的锂离子电池SOC估算方法。该方法... 由于电池荷电状态(state of charge,SOC)无法直接测量,且传统的SOC估算方法精度低。为了提升锂离子电池SOC估算精度,对比了不同深度学习网络模型应用于SOC估算的效果,并提出了一种基于DRSN-CW-LSTM网络的锂离子电池SOC估算方法。该方法基于长短期记忆网络(long-short-term memory,LSTM)和逐通道不同阈值的深度残差收缩网络(deep residual shrinkage networks with channel-wise thresholds,DRSN-CW),利用锂离子电池电压、电流、温度、容量等数据信息在深度残差收缩网路中进行特征提取,通过LSTM进一步拟合时间序列数据趋势,实现锂离子电池在使用周期内SOC的预测。在DRSN-CW网络的残差收缩模块中可以实现自适应噪声数据处理功能,消除锂离子电池数据流质量对SOC预测的负面影响。利用锂电池公共数据集训练所提出的网络,对比了3种神经网络模型在该两组数据集上的预测效果。实验结果表明,所提出的深度学习模型在两组公开数据集上的MAE和RMSE均值都控制在5%以内,相比其他3种深度学习模型有更好的抗噪性能和预测性能,且估算精度高。 展开更多
关键词 锂离子电池 荷电状态预测 噪声处理 深度学习 长短期记忆网络 深度残差收缩神经网络
下载PDF
基于LSTM循环神经网络的电池SOC预测方法 被引量:15
19
作者 耿攀 许梦华 薛士龙 《上海海事大学学报》 北大核心 2019年第3期120-126,共7页
针对锂离子电池荷电状态(state of charge,SOC)预测问题,利用长短期记忆(long short-term memory,LSTM)循环神经网络建立电池SOC预测模型。在恒阻放电情况下,将电池输出电流、输出电压和电池表面温度作为模型的主要输入,使用训练样本对... 针对锂离子电池荷电状态(state of charge,SOC)预测问题,利用长短期记忆(long short-term memory,LSTM)循环神经网络建立电池SOC预测模型。在恒阻放电情况下,将电池输出电流、输出电压和电池表面温度作为模型的主要输入,使用训练样本对神经网络进行训练,使用验证样本进行验证。结果表明,用该方法进行电池SOC预测时可使最大绝对误差仅为1.96%,均方根误差为0.986%,可行性被验证。分析神经网络隐含层中不同的神经元个数对预测结果的影响,对比不同批大小情况下训练出的神经网络的预测误差。将隐含层分别设置为1至3个LSTM细胞核,得到不同条件下神经网络的预测误差。结果为电池SOC预测的神经网络模型的隐含层神经元个数、批大小和LSTM细胞核个数的设定提供参考。 展开更多
关键词 锂离子电池 荷电状态(SOC) 电动汽车 长短期记忆(LSTM) 循环神经网络
下载PDF
基于循环神经网络的推荐算法 被引量:25
20
作者 高茂庭 徐彬源 《计算机工程》 CAS CSCD 北大核心 2019年第8期198-202,209,共6页
传统电影推荐算法多数基于用户和电影的静态属性进行推荐,忽略了时间序列数据内在的时间和因果因素,推荐质量不高。为此,利用循环神经网络(RNN)在处理时间序列上的优势,提出一种推荐算法R-RNN。采用 2个长短期记忆网络分别挖掘用户和电... 传统电影推荐算法多数基于用户和电影的静态属性进行推荐,忽略了时间序列数据内在的时间和因果因素,推荐质量不高。为此,利用循环神经网络(RNN)在处理时间序列上的优势,提出一种推荐算法R-RNN。采用 2个长短期记忆网络分别挖掘用户和电影的潜在状态,实现长距离的历史状态积累,将用户状态和电影状态的内积作为最终评分。在IMDB和Netflix数据集及Netflix子集上的实验结果表明,与基于概率矩阵分解、TimeSVD++及AutoRec算法相比,该算法能够有效降低均方根误差,并提高预测评分的准确度。 展开更多
关键词 推荐算法 循环神经网络 长短期记忆网络 时间动态 潜在状态
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部