犹豫模糊语言术语集(Hesitance Fuzzy Linguistic Term Sets,HFLTSs)允许决策者们用几个可能的语言术语来评估一个属性.近来,采用HFLTSs来进行模糊聚类分析的问题越来越受关注.考虑到目前基于HFLTSs的模糊聚类算法还存在计算复杂度高的...犹豫模糊语言术语集(Hesitance Fuzzy Linguistic Term Sets,HFLTSs)允许决策者们用几个可能的语言术语来评估一个属性.近来,采用HFLTSs来进行模糊聚类分析的问题越来越受关注.考虑到目前基于HFLTSs的模糊聚类算法还存在计算复杂度高的问题,提出了一种新的正交模糊聚类算法:首先计算样本之间的距离测度得到距离测度矩阵,接着计算其等价矩阵;然后确定置信水平值,通过置信水平值对等价矩阵进行切割;最后根据切割矩阵的列向量之间的正交关系来确定对应样本是否可以放在同一个类别,以此得到聚类结果.该算法步骤简单,计算复杂度低,并且适合于数据量大的模糊聚类问题.本文末尾将通过一个实例结合k-means聚类算法证明该算法的可行性和高效性.展开更多
文摘犹豫模糊语言术语集(Hesitance Fuzzy Linguistic Term Sets,HFLTSs)允许决策者们用几个可能的语言术语来评估一个属性.近来,采用HFLTSs来进行模糊聚类分析的问题越来越受关注.考虑到目前基于HFLTSs的模糊聚类算法还存在计算复杂度高的问题,提出了一种新的正交模糊聚类算法:首先计算样本之间的距离测度得到距离测度矩阵,接着计算其等价矩阵;然后确定置信水平值,通过置信水平值对等价矩阵进行切割;最后根据切割矩阵的列向量之间的正交关系来确定对应样本是否可以放在同一个类别,以此得到聚类结果.该算法步骤简单,计算复杂度低,并且适合于数据量大的模糊聚类问题.本文末尾将通过一个实例结合k-means聚类算法证明该算法的可行性和高效性.