期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
含参数的导数恒成立问题的解决方法探究
1
作者 张红生 《数理化学习(高中版)》 2015年第12期11-11,共1页
高考中含参数的导数恒成立问题,是高考中的热点问题,是每年的高考中必考的知识点,对于这一类问题,学生感到入手容易深入难,这类问题也是很难拿到满分的一道把关题,笔者认为处理这类问题的方法有独立参数法法、整体最值法、分类讨... 高考中含参数的导数恒成立问题,是高考中的热点问题,是每年的高考中必考的知识点,对于这一类问题,学生感到入手容易深入难,这类问题也是很难拿到满分的一道把关题,笔者认为处理这类问题的方法有独立参数法法、整体最值法、分类讨论法、二次求导法、虚拟零元法等,本文主要讲述利用独立参数法来解决这一类题目的方法. 展开更多
关键词 导数 恒成立 独立参数法
原文传递
Theoretical generalization of Markov chain random field from potential function perspective 被引量:2
2
作者 黄翔 王志忠 郭建华 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期189-200,共12页
The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial ... The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial Markov chain(SMC) that can move in the whole space. Generally, the theoretical backbone of MCRF is conditional independence assumption, which is a way around the problem of knowing joint probabilities of multi-points. This so-called Naive Bayes assumption should not be taken lightly and should be checked whenever possible because it is mathematically difficult to prove. Rather than trap in this independence proving, an appropriate potential function in MRF theory is chosen instead. The MCRF formulas are well deduced and the joint probability of MRF is presented by localization approach, so that the complicated parameter estimation algorithm and iteration process can be avoided. The MCRF model is then applied to the lithofacies identification of a region and compared with triplex Markov chain(TMC) simulation. Analyses show that the MCRF model will not cause underestimation problem and can better reflect the geological sedimentation process. 展开更多
关键词 localization approach Markov model potential fimction reservoir simulation transiogram fitting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部