A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t...A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.展开更多
Independent component analysis (ICA) is a widely used method for blind source separation (BSS). The mature ICA model has a restriction that the number of the sources must equal to that of the sensors used to colle...Independent component analysis (ICA) is a widely used method for blind source separation (BSS). The mature ICA model has a restriction that the number of the sources must equal to that of the sensors used to collect data, which is hard to meet in most practical cases. In this paper, an overdetermined ICA method is proposed and successfully used in the analysis of human colonic pressure signals. Using principal component analysis (PCA), the method estimates the number of the sources firstly and reduces the dimensions of the observed signals to the same with that of the sources; and then, Fast- ICA is used to estimate all the sources. From 26 groups of colonic pressure recordings, several colonic motor patterns are extracted, which riot only prove the effectiveness of this method, but also greatly facilitate further medical researches.展开更多
基金Project(217/s/458)supported by Azarbaijan Shahid Madani University,Iran
文摘A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.
基金supported by National Natural Science Foundation(No.60875061)
文摘Independent component analysis (ICA) is a widely used method for blind source separation (BSS). The mature ICA model has a restriction that the number of the sources must equal to that of the sensors used to collect data, which is hard to meet in most practical cases. In this paper, an overdetermined ICA method is proposed and successfully used in the analysis of human colonic pressure signals. Using principal component analysis (PCA), the method estimates the number of the sources firstly and reduces the dimensions of the observed signals to the same with that of the sources; and then, Fast- ICA is used to estimate all the sources. From 26 groups of colonic pressure recordings, several colonic motor patterns are extracted, which riot only prove the effectiveness of this method, but also greatly facilitate further medical researches.