为了弥补传统MPCA(Modular Principal Component Analysis)方法在人脸识别中忽略子图像之间差异的缺陷,本文提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA).首先选取人脸训练样本中具有相似...为了弥补传统MPCA(Modular Principal Component Analysis)方法在人脸识别中忽略子图像之间差异的缺陷,本文提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA).首先选取人脸训练样本中具有相似光照、表情和姿态的图像进行分块,然后将训练样本的子图像和测试样本的子图像进行最优投影,得到子特征矩阵.最后,求得样本间的距离,利用最小距离分类器进行样本的分类.在Yale人脸数据库上的实验结果表明:IFMPCA算法在人脸正确识别率方面优于传统PCA算法.展开更多
文摘为了弥补传统MPCA(Modular Principal Component Analysis)方法在人脸识别中忽略子图像之间差异的缺陷,本文提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA).首先选取人脸训练样本中具有相似光照、表情和姿态的图像进行分块,然后将训练样本的子图像和测试样本的子图像进行最优投影,得到子特征矩阵.最后,求得样本间的距离,利用最小距离分类器进行样本的分类.在Yale人脸数据库上的实验结果表明:IFMPCA算法在人脸正确识别率方面优于传统PCA算法.
文摘为了有效利用特征集所包含的敏感特征进行故障诊断,提出基于独立特征选择(Individual Feature Selection,IFS)与流形学习的故障诊断方法。从多个角度提取振动信号的混合特征,构建原始高维特征集。采用一种改进的核Fisher特征选择方法为每两类故障状态独立选择敏感特征集,并通过线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)算法挖掘出可区分度更高的特征子集。采用"一对一"的方法训练多个二类分类支持向量机(Supported Vector Machine,SVM),将得到的低维特征输入多分类故障诊断模型进行识别。液压泵故障诊断实验表明,所提方法具备较高的诊断准确率。