In this paper, the author at first develops a method to study convergence of the cascadealgorithm in a Banach space without stable assumption on the initial (see Theorem 2.1), andthen applies the previous result on th...In this paper, the author at first develops a method to study convergence of the cascadealgorithm in a Banach space without stable assumption on the initial (see Theorem 2.1), andthen applies the previous result on the convergence to characterizing compactly supportedrefinable distributions in fractional Sobolev spaces and Holder continuous spaces (see Theorems3.1, 3.3, and 3.4). Finally the author applies the above characterization to choosing appropriateinitial to guarantee the convergence of the cascade algorithm (see Theorem 4.2).展开更多
文摘In this paper, the author at first develops a method to study convergence of the cascadealgorithm in a Banach space without stable assumption on the initial (see Theorem 2.1), andthen applies the previous result on the convergence to characterizing compactly supportedrefinable distributions in fractional Sobolev spaces and Holder continuous spaces (see Theorems3.1, 3.3, and 3.4). Finally the author applies the above characterization to choosing appropriateinitial to guarantee the convergence of the cascade algorithm (see Theorem 4.2).