respectively, where r = 1, 2, … , n, and il, i2, … , is are positive integers. In this paper, the Schur convexity of Fn(X, r) and Gn(x, r) are discussed. As applications, by a bijective transformation of indepen...respectively, where r = 1, 2, … , n, and il, i2, … , is are positive integers. In this paper, the Schur convexity of Fn(X, r) and Gn(x, r) are discussed. As applications, by a bijective transformation of independent variable for a Schur convex function, the authors obtain Schur convexity for some other symmetric functions, which subsumes the main results in recent literature; and by use of the theory of majorization establish some inequalities. In particular, the authors derive from the results of this paper the Weierstrass inequalities and the Ky Fan's inequality, and give a generalization of Safta's conjecture in the n-dimensional space and others.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11271118,10871061,11301172)the Nature Science Foundation of Hunan Province(No.12JJ3002)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(No.11A043)the Construct Program of the Key Discipline in Hunan Province
文摘respectively, where r = 1, 2, … , n, and il, i2, … , is are positive integers. In this paper, the Schur convexity of Fn(X, r) and Gn(x, r) are discussed. As applications, by a bijective transformation of independent variable for a Schur convex function, the authors obtain Schur convexity for some other symmetric functions, which subsumes the main results in recent literature; and by use of the theory of majorization establish some inequalities. In particular, the authors derive from the results of this paper the Weierstrass inequalities and the Ky Fan's inequality, and give a generalization of Safta's conjecture in the n-dimensional space and others.