本研究旨在模拟不同狭窄程度和脉搏率的颈动脉搏动血流。采用流-固耦合(FSI)和任意拉格朗日-欧拉(ALE)方法研究了不同狭窄程度、脉搏率和动脉壁性质对周围流体的影响。分别应用Carreau-Yasuda非牛顿超弹性模型和修正Mooney-Rivin超弹性...本研究旨在模拟不同狭窄程度和脉搏率的颈动脉搏动血流。采用流-固耦合(FSI)和任意拉格朗日-欧拉(ALE)方法研究了不同狭窄程度、脉搏率和动脉壁性质对周围流体的影响。分别应用Carreau-Yasuda非牛顿超弹性模型和修正Mooney-Rivin超弹性模型于具有非牛顿行为的血液和超弹性血管壁。结果得到血液的壁面径向位移、压力分布、轴向速度分布和壁面剪切应力。通过增加狭窄的严重程度,轴向速度、血压变化、最大壁面剪切应力和壁面径向位移均呈增长趋势。当脉率在狭窄程度为75%时,最大流量矩、壁面径向位移、压力、轴向速度和壁面剪应力的最大值均增大。此外,与弹性和刚性模型相比,将动脉壁视为超弹性模型,将其周围流体视为非牛顿和非定常,可以使模拟更加真实。在严重程度高达50%的狭窄中,红细胞受到轻微损害,而在严重程度为75%的狭窄中观察到溶血。通过改善动脉粥样硬化,弹性模量从500 k Pa提高到2 MPa,在60 bpm脉率和狭窄程度75%下,剪切应力最大值增长65%。与刚性和弹性动脉壁相比,动脉壁的超弹性模型导致较低的轴向速度、较低的血压、较低的剪切应力和较高的径向位移。展开更多
文摘本研究旨在模拟不同狭窄程度和脉搏率的颈动脉搏动血流。采用流-固耦合(FSI)和任意拉格朗日-欧拉(ALE)方法研究了不同狭窄程度、脉搏率和动脉壁性质对周围流体的影响。分别应用Carreau-Yasuda非牛顿超弹性模型和修正Mooney-Rivin超弹性模型于具有非牛顿行为的血液和超弹性血管壁。结果得到血液的壁面径向位移、压力分布、轴向速度分布和壁面剪切应力。通过增加狭窄的严重程度,轴向速度、血压变化、最大壁面剪切应力和壁面径向位移均呈增长趋势。当脉率在狭窄程度为75%时,最大流量矩、壁面径向位移、压力、轴向速度和壁面剪应力的最大值均增大。此外,与弹性和刚性模型相比,将动脉壁视为超弹性模型,将其周围流体视为非牛顿和非定常,可以使模拟更加真实。在严重程度高达50%的狭窄中,红细胞受到轻微损害,而在严重程度为75%的狭窄中观察到溶血。通过改善动脉粥样硬化,弹性模量从500 k Pa提高到2 MPa,在60 bpm脉率和狭窄程度75%下,剪切应力最大值增长65%。与刚性和弹性动脉壁相比,动脉壁的超弹性模型导致较低的轴向速度、较低的血压、较低的剪切应力和较高的径向位移。