To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, t...To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, these schemes may lead to cascading congestion in regions with high volume of traffic. To solve this problem, a Hybrid-Traffic-Detour based Load Balancing Routing(HLBR) scheme is proposed, where a Long-Distance Traffic Detour(LTD) method is devised and coordinates with distributed traffic detour method to perform self-adaptive load balancing. The forwarding path of LTD is acquired by the Circuitous Multipath Calculation(CMC) based on prior geographical information, and activated by the LTDShift-Trigger(LST) through real-time congestion perception. Simulation results show that the HLBR can mitigate cascading congestion and achieve efficient traffic distribution.展开更多
基金supported by the National Science Foundation of China(No.61472189)Zhejiang Provincial Natural Science Foundation of China(No.LY18F030015)Wenzhou Public Welfare Science and Technology Project of China(No.G20150015)
文摘To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, these schemes may lead to cascading congestion in regions with high volume of traffic. To solve this problem, a Hybrid-Traffic-Detour based Load Balancing Routing(HLBR) scheme is proposed, where a Long-Distance Traffic Detour(LTD) method is devised and coordinates with distributed traffic detour method to perform self-adaptive load balancing. The forwarding path of LTD is acquired by the Circuitous Multipath Calculation(CMC) based on prior geographical information, and activated by the LTDShift-Trigger(LST) through real-time congestion perception. Simulation results show that the HLBR can mitigate cascading congestion and achieve efficient traffic distribution.