在20世纪90年代,有学者认为峨眉山大火成岩省(Emeishan Large Igneous Province,ELIP)大规模火山活动与二叠-三叠系之交(Permian-Triassic Boundary,P-TB)的生物大灭绝事件在时间上有耦合关系,随后的40Ar/39Ar同位素测年结果也显示峨眉...在20世纪90年代,有学者认为峨眉山大火成岩省(Emeishan Large Igneous Province,ELIP)大规模火山活动与二叠-三叠系之交(Permian-Triassic Boundary,P-TB)的生物大灭绝事件在时间上有耦合关系,随后的40Ar/39Ar同位素测年结果也显示峨眉山大火成岩省是晚二叠世形成的。但是,近些年大量的SHRIMP U-Pb测年结果表明,ELIP大规模火山喷发约在~260Ma;因此有研究认为,ELIP火山活动与中二叠世瓜德卢普期末(end-Guadalupian)的生物灭绝事件在时间上联系更加紧密。至于P-T界线生物大灭绝,现在多数学者认为是,由于西伯利亚大火成岩省火山强烈活动释放大量气体和火山灰所造成环境变化引起的。最近,我们在ELIP东部的贵州盘县峨眉山玄武岩系剖面中发现顶部发育厚度达近百米的凝灰岩层,其LA-ICP-MSU-Pb法测年结果为251.0±1.0Ma,与浙江煤山剖面中二叠系-三叠系边界处黏土层或火山灰层的锆石U-Pb年龄接近。因此,峨眉山玄武岩喷发结束的时间应该在P-T边界,与西伯利亚大火成岩省的主体喷发时间一致。新的测年结果暗示了ELIP火山活动与地球历史上最大的一次生物灭绝事件(P-T边界)可能存在着成因联系。展开更多
The diamond anvil cell experiments have revealed that the calcium ferrite(CF)-type aluminous phase is probably an important component of subducted mid-oceanic ridge basalt(MORB) in the lower mantle. In this study, we ...The diamond anvil cell experiments have revealed that the calcium ferrite(CF)-type aluminous phase is probably an important component of subducted mid-oceanic ridge basalt(MORB) in the lower mantle. In this study, we have performed first principles lattice dynamics calculations for the Mg Al_2O_4 end-member of the aluminous phase based on density functional perturbation theory using two functionals within the local density approximation(LDA) and generalized gradient approximation(GGA) for bracketing the calculated properties at their lower and upper limits, respectively. A simple empirical pressure correction at zero temperature has been applied to both LDA and GGA. The results of room-temperature equation of state(EOS) and zero-pressure thermal expansion calculated by GGA with pressure correction have shown the best agreement with available experimental data. The high-pressure and temperature thermodynamic properties have been obtained using the GGA with correction method. The pressure-volume relations are fitted with a third-order high-temperature Birch-Murnaghan EOS. The isobaric heat capacity, the coefficient of thermal expansion and isothermal bulk modulus are fitted with polynomials and their coefficients are reported in the range of 0–40 GPa and 300–2000 K. The density profile of MORB estimated using the computational thermo-elastic constants supports the hypothesis that the subducted oceanic slabs could gain enough downwelling forces into the lower mantle.展开更多
基金supported by the State Key Development Program of Basic Research of China(Grant No.2014CB845905)the National Natural Science Foundation of China(Grant Nos.41402033&40973003)the Fundamental Research Funds for the Central Universities(Grant No.20620140385)
文摘The diamond anvil cell experiments have revealed that the calcium ferrite(CF)-type aluminous phase is probably an important component of subducted mid-oceanic ridge basalt(MORB) in the lower mantle. In this study, we have performed first principles lattice dynamics calculations for the Mg Al_2O_4 end-member of the aluminous phase based on density functional perturbation theory using two functionals within the local density approximation(LDA) and generalized gradient approximation(GGA) for bracketing the calculated properties at their lower and upper limits, respectively. A simple empirical pressure correction at zero temperature has been applied to both LDA and GGA. The results of room-temperature equation of state(EOS) and zero-pressure thermal expansion calculated by GGA with pressure correction have shown the best agreement with available experimental data. The high-pressure and temperature thermodynamic properties have been obtained using the GGA with correction method. The pressure-volume relations are fitted with a third-order high-temperature Birch-Murnaghan EOS. The isobaric heat capacity, the coefficient of thermal expansion and isothermal bulk modulus are fitted with polynomials and their coefficients are reported in the range of 0–40 GPa and 300–2000 K. The density profile of MORB estimated using the computational thermo-elastic constants supports the hypothesis that the subducted oceanic slabs could gain enough downwelling forces into the lower mantle.