Based on the meteorological data and production data of maize of 10 stations in Northeast China from 1961 to 2006,the primary climatic factors influencing maize yield in different region were studies by the method of ...Based on the meteorological data and production data of maize of 10 stations in Northeast China from 1961 to 2006,the primary climatic factors influencing maize yield in different region were studies by the method of Baier yields models.The result showed that the yield of maize in Heilongjiang and Jilin Province were mainly affected by temperatures,with air temperature increased,the meteorological yield of maize increased.The meteorological yield of maize in Liaoning Province was mainly affected by precipitation and sunshine duration,and different regions had different effects.展开更多
In this study,we first zoned the drought degree in the years from 1971 to 2000 in Heilongjiang Province by using precipitation anomaly equation as an indicator,and analyzed the temporal distribution characteristics an...In this study,we first zoned the drought degree in the years from 1971 to 2000 in Heilongjiang Province by using precipitation anomaly equation as an indicator,and analyzed the temporal distribution characteristics and laws of arid disaster in different periods.Using the method of human being habitat risk assessment,we further studied and zoned the drought disaster risk index(DDRI)of maize cultivated in 74 stations in Heilongjiang Province via GIS software.The results showed that(1)the occurrence frequency of moderate and heavy drought in Heilongjiang Province was 1970s>1990s>1980s,and(2)the high risk area of drought disaster for maize production mainly assembled in Qiqihar and Daqing regions in west Heilongjiang Province,where agricultural drought should be highly concerned,while low risk and slight risk areas mainly distribute in middle areas and east plain areas in Heilongjiang Province.Our study provided basis for the defense of agricultural drought disaster.展开更多
Breeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security,resource shortage,and environmental pollution.However,the potential increased yield and r...Breeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security,resource shortage,and environmental pollution.However,the potential increased yield and reduction in fertilizer input achievable by using high-yielding and nutrient-efficient cultivars is unclear.In the present study,we evaluated the yield and nitrogen use efficiency(NUE) of 40 commercial maize hybrids at five locations in North and Northeast China in 2008 and 2009.The effect of interaction between genotype and nitrogen(N) input on maize yield was significant when the yield reduction under low-N treatment was 25%-60%.Based on the average yields achieved with high or low N application,the tested cultivars were classified into four types based on their NUE:efficient-efficient(EE) were efficient under both low and high N inputs,high-N efficient(HNE) under only high N input,low-N efficient(LNE) under only low N input,and nonefficient-nonefficient under neither low nor high N inputs.Under high N application,EE and HNE cultivars could potentially increase maize yield by 8%-10% and reduce N input by 16%-21%.Under low N application,LNE cultivars could potentially increase maize yield by 12%.We concluded that breeding for N-efficient cultivars is a feasible strategy to increase maize yield and/or reduce N input.展开更多
基金Supported by National Science and Technology R&D Program(2006BAD04B02)~~
文摘Based on the meteorological data and production data of maize of 10 stations in Northeast China from 1961 to 2006,the primary climatic factors influencing maize yield in different region were studies by the method of Baier yields models.The result showed that the yield of maize in Heilongjiang and Jilin Province were mainly affected by temperatures,with air temperature increased,the meteorological yield of maize increased.The meteorological yield of maize in Liaoning Province was mainly affected by precipitation and sunshine duration,and different regions had different effects.
基金Supported by Key S&T Program from Heilongjiang Province(GC06C10302S8)
文摘In this study,we first zoned the drought degree in the years from 1971 to 2000 in Heilongjiang Province by using precipitation anomaly equation as an indicator,and analyzed the temporal distribution characteristics and laws of arid disaster in different periods.Using the method of human being habitat risk assessment,we further studied and zoned the drought disaster risk index(DDRI)of maize cultivated in 74 stations in Heilongjiang Province via GIS software.The results showed that(1)the occurrence frequency of moderate and heavy drought in Heilongjiang Province was 1970s>1990s>1980s,and(2)the high risk area of drought disaster for maize production mainly assembled in Qiqihar and Daqing regions in west Heilongjiang Province,where agricultural drought should be highly concerned,while low risk and slight risk areas mainly distribute in middle areas and east plain areas in Heilongjiang Province.Our study provided basis for the defense of agricultural drought disaster.
基金supported by the National Basic Research Program of China (2011CB100305,2009CB11860)the National Natural Science Foundation of China (31121062,31172015)the Special Fund for Agriculture Profession (201103003)
文摘Breeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security,resource shortage,and environmental pollution.However,the potential increased yield and reduction in fertilizer input achievable by using high-yielding and nutrient-efficient cultivars is unclear.In the present study,we evaluated the yield and nitrogen use efficiency(NUE) of 40 commercial maize hybrids at five locations in North and Northeast China in 2008 and 2009.The effect of interaction between genotype and nitrogen(N) input on maize yield was significant when the yield reduction under low-N treatment was 25%-60%.Based on the average yields achieved with high or low N application,the tested cultivars were classified into four types based on their NUE:efficient-efficient(EE) were efficient under both low and high N inputs,high-N efficient(HNE) under only high N input,low-N efficient(LNE) under only low N input,and nonefficient-nonefficient under neither low nor high N inputs.Under high N application,EE and HNE cultivars could potentially increase maize yield by 8%-10% and reduce N input by 16%-21%.Under low N application,LNE cultivars could potentially increase maize yield by 12%.We concluded that breeding for N-efficient cultivars is a feasible strategy to increase maize yield and/or reduce N input.