[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam expl...[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity.展开更多
[ Objective] This study aimed to investigate the effective prevention and control of maize rough dwarf disease in different areas with varying epidemic inten-sity in Shandong Province. [Method] Control effects of sing...[ Objective] This study aimed to investigate the effective prevention and control of maize rough dwarf disease in different areas with varying epidemic inten-sity in Shandong Province. [Method] Control effects of single application of virus in-hibitors and composite application of virus inhibitors with seed dressing agents and pesticides on maize rough dwarf disease in different areas with varying epidemic intensity were investigated. [Result] The same treatment possessed entirely different effects in severely affected areas and slightly affected areas. To be specific, single application of virus inhibitors in slightly affected areas exhibited good control effects, with a control efficiency of 76.59% and yield increment rate of 158.21%; in severely affected areas, single application of virus inhibitors led to low control efficiency and yield increment rate. The highest control efficiency of composite application of virus inhibitors with seed dressing agents and pesticides in severely affected areas was 71.38%, and experimental plots changed from total crop failure to have certain eco-nomic output. [Conclusion] ln different areas with varying epidemic intensity of maize rough dwarf disease, different application modes should be adopted according to lo-cal conditions, thereby saving cost and improving control efficiency.展开更多
[Objective] This study aimed to investigate the influence of illumination intensity, 5-aminolevulinic acid (ALA) concentration and their interaction on chlorophyll fluorescence parameters and yield of summer maize. ...[Objective] This study aimed to investigate the influence of illumination intensity, 5-aminolevulinic acid (ALA) concentration and their interaction on chlorophyll fluorescence parameters and yield of summer maize. [Method] Two illumination intensity levels and five ALA concentrations were applied in the experiment using 2x5 completely balanced program. The two illumination intensity levels were natural light (So) and 60% shade (SO, and five ALA concentrations were 0, 1, 10, 25 and 50 mg/L. [Result] The relative chlorophyll content of leaf (SPAD), the optimal/maximal quantum yield of PS II (Fv/Fm), the photochemical quenching coefficient (qP), electron transport rate (ETR), grain number per cob and grain weight per cob in $1 treatment were significantly reduced compared with that in So. However, the non- photochemical quenching coefficient (qN) was significantly increased. The responses of these parameters to ALA were different under So and $1 treatments. The SPAD, Fv/Fm, qP, ETR, grain number and grain weight per cob were firstly increased, but then decreased following the raise of ALA concentration, ranging from 0 to 50 mg/L, whereas qN showed opposite trend. The effect of the interaction of illumination in- tensity and ALA concentration on these parameters was significant (P〈0.05). Under natural light, summer maize could obtain higher SPAD, Fv/Fm, qP and ETR and lower qN combined with low concentration of ALA. However, high concentration of ALA was needed under shading to get the same results. [Conclusion] Soaking seed in suitable concentration of ALA can reduce the yield loss of summer maize caused by short-term shading in seedling stage.展开更多
Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of...Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of tectonic settings, the strike and scale of causative faults, focal mechanism solutions, fault rupture process and attenuation relationship in Western China, as well as local site effects. The results are as follows: (1) The major axis of shaking intensity distribution is directed NW-SE, parallel to the Yushu fault; (2) The meizoseismal area reaches an intensity IX and covers 300km^2; (3) The intensity IX area is mainly distributed in the area 40km southeast and 15km northwest of the epicenter along the causative fault; (4) Due to local soil conditions, the northwestern part of the area with intensity IX on bedrock shows an intensity Ⅷ when converting from the bedrock to the soil; (5) Areas with intensity Ⅷ, VII, VI measure 3,000km^2, 8,000km^2, and 24,000km^2, respectively.展开更多
Intercropping can improve field microclimates, decrease the incidence of crop diseases, and increase crop yields, but the reasons for this remain unknown. Solar radiation is the most important environmental influence....Intercropping can improve field microclimates, decrease the incidence of crop diseases, and increase crop yields, but the reasons for this remain unknown. Solar radiation is the most important environmental influence. To understand the mechanisms of intercropping we established an experiment consisting of three cropping patterns: a monocropping control {treatment A) and two intercropping treatments (B: two rows of maize and two rows of soybean intercropping; C: two rows of maize and four rows of soybean intercropping). Results show that compared to monocropping, intercropping increased the amount of light penetrating to inferior leaves in maize plants. Light intensity reaching maize plants at the heading stage in intercropping increased over two-fold at 30 cm above ground and 10-fold at 70 cm above ground, compared with monocropping. At the flowering to maturity stage, light intensity at 110, 160 and 210 cm above ground among maize plants was greatly increased in intercropping compared with monocropping, by some five-fold, two-fold and 12%, respectively. Moreover, light intensity declined more slowly at the measured heights in the intercropping system compared with monocropping. From the 7-18th leaf, light intensity per leaf increased two-fold in intercropping compared with monocropping. Daily light duration increased more than a mean of 5 h per day per leaf in intercropping compared with monocropping. The biological characters of maize including thousand kernel weight, yield per plant and area of ear leaves were all greater in intercropping than monocropping. These results suggest that, for maize, intercropping improves light density and duration significantly and this may contribute to biomass and yield increases.展开更多
基金Supported by National Basic Research Program of China(2006CB708407 2009CB220005)+2 种基金National Natural Science Foun-dation of China (90610001 20871106)Program of 211 Projectfor Zhengzhou University from Ministry of Education~~
文摘[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity.
基金Supported by National Public Welfare Industry Research Project of China(201003031)Science and Technology Development Program of Shandong Province(2009GG10009015)Agricultural Science and Technology Innovation Program of Jinan City(201302637-1)~~
文摘[ Objective] This study aimed to investigate the effective prevention and control of maize rough dwarf disease in different areas with varying epidemic inten-sity in Shandong Province. [Method] Control effects of single application of virus in-hibitors and composite application of virus inhibitors with seed dressing agents and pesticides on maize rough dwarf disease in different areas with varying epidemic intensity were investigated. [Result] The same treatment possessed entirely different effects in severely affected areas and slightly affected areas. To be specific, single application of virus inhibitors in slightly affected areas exhibited good control effects, with a control efficiency of 76.59% and yield increment rate of 158.21%; in severely affected areas, single application of virus inhibitors led to low control efficiency and yield increment rate. The highest control efficiency of composite application of virus inhibitors with seed dressing agents and pesticides in severely affected areas was 71.38%, and experimental plots changed from total crop failure to have certain eco-nomic output. [Conclusion] ln different areas with varying epidemic intensity of maize rough dwarf disease, different application modes should be adopted according to lo-cal conditions, thereby saving cost and improving control efficiency.
基金Supported by National Key Technology Research and Development Program(2011BAD10B07)~~
文摘[Objective] This study aimed to investigate the influence of illumination intensity, 5-aminolevulinic acid (ALA) concentration and their interaction on chlorophyll fluorescence parameters and yield of summer maize. [Method] Two illumination intensity levels and five ALA concentrations were applied in the experiment using 2x5 completely balanced program. The two illumination intensity levels were natural light (So) and 60% shade (SO, and five ALA concentrations were 0, 1, 10, 25 and 50 mg/L. [Result] The relative chlorophyll content of leaf (SPAD), the optimal/maximal quantum yield of PS II (Fv/Fm), the photochemical quenching coefficient (qP), electron transport rate (ETR), grain number per cob and grain weight per cob in $1 treatment were significantly reduced compared with that in So. However, the non- photochemical quenching coefficient (qN) was significantly increased. The responses of these parameters to ALA were different under So and $1 treatments. The SPAD, Fv/Fm, qP, ETR, grain number and grain weight per cob were firstly increased, but then decreased following the raise of ALA concentration, ranging from 0 to 50 mg/L, whereas qN showed opposite trend. The effect of the interaction of illumination in- tensity and ALA concentration on these parameters was significant (P〈0.05). Under natural light, summer maize could obtain higher SPAD, Fv/Fm, qP and ETR and lower qN combined with low concentration of ALA. However, high concentration of ALA was needed under shading to get the same results. [Conclusion] Soaking seed in suitable concentration of ALA can reduce the yield loss of summer maize caused by short-term shading in seedling stage.
文摘Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of tectonic settings, the strike and scale of causative faults, focal mechanism solutions, fault rupture process and attenuation relationship in Western China, as well as local site effects. The results are as follows: (1) The major axis of shaking intensity distribution is directed NW-SE, parallel to the Yushu fault; (2) The meizoseismal area reaches an intensity IX and covers 300km^2; (3) The intensity IX area is mainly distributed in the area 40km southeast and 15km northwest of the epicenter along the causative fault; (4) Due to local soil conditions, the northwestern part of the area with intensity IX on bedrock shows an intensity Ⅷ when converting from the bedrock to the soil; (5) Areas with intensity Ⅷ, VII, VI measure 3,000km^2, 8,000km^2, and 24,000km^2, respectively.
基金supported by the National Basic Research Program (2011CB100400)
文摘Intercropping can improve field microclimates, decrease the incidence of crop diseases, and increase crop yields, but the reasons for this remain unknown. Solar radiation is the most important environmental influence. To understand the mechanisms of intercropping we established an experiment consisting of three cropping patterns: a monocropping control {treatment A) and two intercropping treatments (B: two rows of maize and two rows of soybean intercropping; C: two rows of maize and four rows of soybean intercropping). Results show that compared to monocropping, intercropping increased the amount of light penetrating to inferior leaves in maize plants. Light intensity reaching maize plants at the heading stage in intercropping increased over two-fold at 30 cm above ground and 10-fold at 70 cm above ground, compared with monocropping. At the flowering to maturity stage, light intensity at 110, 160 and 210 cm above ground among maize plants was greatly increased in intercropping compared with monocropping, by some five-fold, two-fold and 12%, respectively. Moreover, light intensity declined more slowly at the measured heights in the intercropping system compared with monocropping. From the 7-18th leaf, light intensity per leaf increased two-fold in intercropping compared with monocropping. Daily light duration increased more than a mean of 5 h per day per leaf in intercropping compared with monocropping. The biological characters of maize including thousand kernel weight, yield per plant and area of ear leaves were all greater in intercropping than monocropping. These results suggest that, for maize, intercropping improves light density and duration significantly and this may contribute to biomass and yield increases.