基于Contourlet变换与最小二乘支持向量机(least squares support vector machine,LSSVM),提出了一种玉米种子高精度识别算法。该算法首先对玉米种子图像进行多层Contourlet分解,结合指数函数和反正弦函数,提出了一种新型的阈值函数模...基于Contourlet变换与最小二乘支持向量机(least squares support vector machine,LSSVM),提出了一种玉米种子高精度识别算法。该算法首先对玉米种子图像进行多层Contourlet分解,结合指数函数和反正弦函数,提出了一种新型的阈值函数模型对高频分解系数进行去噪处理;其次,将低频分解系数与去噪后的高频分解系数进行重构,得到去噪后的玉米种子图像;最后采用LSSVM对去噪后的玉米种子图像进行识别,采用径向基函数模型作为LSSVM核函数模型。试验结果表明,对去噪后的图像进行LSSVM识别的精度优于直接对图像进行LSSVM、SVM识别的精度。展开更多
文摘基于Contourlet变换与最小二乘支持向量机(least squares support vector machine,LSSVM),提出了一种玉米种子高精度识别算法。该算法首先对玉米种子图像进行多层Contourlet分解,结合指数函数和反正弦函数,提出了一种新型的阈值函数模型对高频分解系数进行去噪处理;其次,将低频分解系数与去噪后的高频分解系数进行重构,得到去噪后的玉米种子图像;最后采用LSSVM对去噪后的玉米种子图像进行识别,采用径向基函数模型作为LSSVM核函数模型。试验结果表明,对去噪后的图像进行LSSVM识别的精度优于直接对图像进行LSSVM、SVM识别的精度。