Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of th...Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates.At 400℃,pyrolysis of molecular chain could occur,only 13 pyrolysates could be identified.The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃.At 550℃-750℃,pyrolysis of molecular chain could completely take place,46 pyrolysates could be found.As the temperature increases,the compositions of pyrolysate are distinctly increased.Several compounds,especially benzoic acid,monopropenyl-p-phthalate,2-propenyl benzoate,di-2-propenyl ester,1,4-benzenedicarboxylic acid,benzene,1,5-hexadiene,biphenyl and 1,3-propanediol dibenzoate could be formed.The thermal degradation mechanism,which is determined by structure and amount of the thermal decomposition products,are described.During pyrolysis of polytrimethylene terephthalate,polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain.The chain scissions are followed by the elimination reaction,linkage action and secondary reactions,which bring about a variety fragment.展开更多
In the recent decade, the development and application of organocatalysis for CO_2 transformation into useful chemicals have attracted much attention. Among these organocatalysts, Lewis base-CO_2 adducts(LB-CO_2) were ...In the recent decade, the development and application of organocatalysis for CO_2 transformation into useful chemicals have attracted much attention. Among these organocatalysts, Lewis base-CO_2 adducts(LB-CO_2) were found to be more efficient.The used Lewis base has great effect on the catalytic activity of its CO_2 adduct. This review reports the recent progress in LB-CO_2 adducts catalyzed the cyclization of CO_2 with epoxides or aziridines to afford cyclic carbonates or oxazolidinones,the carboxylation of CO_2 with propargylic alcohols to α-alkylidene cyclic carbonates, and the reduction of CO_2 to methanol,formamides and methylamines, with the focus on the catalytic mechanism.展开更多
In this work, we report the hybrid copolymerization of various cyclic monomers and vinyl monomers. Our studies demonstrate that 1-tert-butyl-4,4,4-tris-(dimethylamino)-2,2-bis[tris(dimethylamino) phophoranyliden-a...In this work, we report the hybrid copolymerization of various cyclic monomers and vinyl monomers. Our studies demonstrate that 1-tert-butyl-4,4,4-tris-(dimethylamino)-2,2-bis[tris(dimethylamino) phophoranyliden-amino]-2A5,A5-catenadi(phosphazene) (t-BuP4) can catalyze the hybrid copolymerization of caprolactone (CL), lactide (LA) or cyclic carbonate ester with acrylate or methyl acrylate. However, the polymerization of cyclosiloxane with vinyl monomers yields two corresponding homopolymers, and the polymerization of lactone with acrylonitrile (AN) produces only polyacrylonitrile. Clearly, the extent of matching of activity between a monomer and an active center determines whether or not there is hybrid copolymerization.展开更多
文摘Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates.At 400℃,pyrolysis of molecular chain could occur,only 13 pyrolysates could be identified.The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃.At 550℃-750℃,pyrolysis of molecular chain could completely take place,46 pyrolysates could be found.As the temperature increases,the compositions of pyrolysate are distinctly increased.Several compounds,especially benzoic acid,monopropenyl-p-phthalate,2-propenyl benzoate,di-2-propenyl ester,1,4-benzenedicarboxylic acid,benzene,1,5-hexadiene,biphenyl and 1,3-propanediol dibenzoate could be formed.The thermal degradation mechanism,which is determined by structure and amount of the thermal decomposition products,are described.During pyrolysis of polytrimethylene terephthalate,polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain.The chain scissions are followed by the elimination reaction,linkage action and secondary reactions,which bring about a variety fragment.
基金supported by the National Natural Science Foundation of China(21402021)the Program for Changjiang Scholars and Innovative Research Team in University(IRT13008)
文摘In the recent decade, the development and application of organocatalysis for CO_2 transformation into useful chemicals have attracted much attention. Among these organocatalysts, Lewis base-CO_2 adducts(LB-CO_2) were found to be more efficient.The used Lewis base has great effect on the catalytic activity of its CO_2 adduct. This review reports the recent progress in LB-CO_2 adducts catalyzed the cyclization of CO_2 with epoxides or aziridines to afford cyclic carbonates or oxazolidinones,the carboxylation of CO_2 with propargylic alcohols to α-alkylidene cyclic carbonates, and the reduction of CO_2 to methanol,formamides and methylamines, with the focus on the catalytic mechanism.
基金support of the National Basic Research Program of China (2012CB933802) is acknowledged
文摘In this work, we report the hybrid copolymerization of various cyclic monomers and vinyl monomers. Our studies demonstrate that 1-tert-butyl-4,4,4-tris-(dimethylamino)-2,2-bis[tris(dimethylamino) phophoranyliden-amino]-2A5,A5-catenadi(phosphazene) (t-BuP4) can catalyze the hybrid copolymerization of caprolactone (CL), lactide (LA) or cyclic carbonate ester with acrylate or methyl acrylate. However, the polymerization of cyclosiloxane with vinyl monomers yields two corresponding homopolymers, and the polymerization of lactone with acrylonitrile (AN) produces only polyacrylonitrile. Clearly, the extent of matching of activity between a monomer and an active center determines whether or not there is hybrid copolymerization.