Modified classical Boltzmann entropy as generalized entropy, then proposed Maximum Generalized Entropy Principle fusing physics and biology, and established a new model for biological origin and evolutions based on th...Modified classical Boltzmann entropy as generalized entropy, then proposed Maximum Generalized Entropy Principle fusing physics and biology, and established a new model for biological origin and evolutions based on this principle, finally took protein evolution for an example to analyze. The model provided some reference for biological complexity research.展开更多
[Objective] This study aimed to analyze the interaction between genotype of flavonoids of barley grain and environment, to increase the flavonoid content of barley grain in cultivation and breeding. [Method] In this s...[Objective] This study aimed to analyze the interaction between genotype of flavonoids of barley grain and environment, to increase the flavonoid content of barley grain in cultivation and breeding. [Method] In this study, the content of cate- chin, myricetin, quercetin and kaempferol of barley grain planted in Kunming, Qujing and Baoshan were determined by HPLC, and the genotype, environment, genotype- environment interaction of the flavonoid content of barley grain were analyzed. [Result] According to the experimental results, the genotype variance, environmental variance and G x E interaction variance of catechin and kaempferol contents show the same trend: genotype variation 〉 environmental variation 〉 G × E interaction variation, which all reach a extremely significant level; the genotype variance, envi- ronmental variance and G × E interaction variance of quercetin and total flavonoid contents show the same trend: genetype variation 〉 G × E interaction variation 〉 environmental variation, which all reach a extremely significant level; the genotype variance and environmental variance of myricetin content both reach a extremely sig- nificant level, while the G × E interaction variance reaches a significant level, showing an order of genotype variation 〉 environmental variation 〉 G × E interaction variation; the genotype variance, environmental variance and G x E interaction vari- ance of total flavonoid content show an order of genotype variation 〉 environmental variation 〉 G × E interaction variation. Among different barley varieties, Ziguang- mangluoerling and Kuanyingdamai in Qujing, Kunming and Baoshan have relatively high content of quercetin, while other barley varieties barely contain any quercetin. The grains of Ziguangmangluoerling and Kuanyingdamai are purple, while the grains of other barley varieties are yellow. [Conclusion] Four main flavonoids and the total flavonoids of barley grain are mainly under genetic control and affected by genetic- environment interactions; the purple barley grains contain high content of quercetin.展开更多
Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-ge...Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-gen gas flow rate on the conversion of cyclohexene and selectivity of cyclohexene oxide were investigated and dis-cussed, and the optimal operation condition was found, under which 95.2% conversion of cyclohexene and 90.7% selectivity of cyclohexene oxide were achieved. The ultrasonic airlift loop reactor utilizes the synergistic effect of sonochemsitry and higher oxygen transfer rate. Possible reaction mechanisms were outlined and the reason of ul-trasound promotion of epoxidation reactionwas analyzed.展开更多
Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts f...Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts for the photosynthesis of propylene oxide via the epoxidation of propene.The Au/Ag mass ratio and reaction temperature were demonstrated to have significant effects on the catalytic activity and selectivity of propylene oxide.The optimal formation rate(68.3μmol/g·h)and selectivity(52.3%)toward propylene oxide were achieved with an Au:Ag mass ratio of4:1.Notably,the strong synergistic effect between Au and Ag resulted in superior photocatalysis of the bimetallic systems compared with those of the individual systems.A probable reaction mechanism was proposed based on the theoretical and experimental results.展开更多
Herein,we report a unique approach towards the preparation of C-modified and N-doped TiO2 hollow spheres(C/N-TiO2).TEM,SEM,and XPS analyses were used to confirm that the carbon and nitrogen co-decorated TiO2 photocata...Herein,we report a unique approach towards the preparation of C-modified and N-doped TiO2 hollow spheres(C/N-TiO2).TEM,SEM,and XPS analyses were used to confirm that the carbon and nitrogen co-decorated TiO2 photocatalyst was formed.Carbon-decoration improves the visible-light absorption and speeds up the separation of the photo-generated electron-hole pairs.C/N-TiO2 not only narrows the band gap of TiO2,but also exhibits excellent photocatalytic activity for the degradation of tetracycline and tetracycline hydrochloride.In addition,the C/N-TiO2 photocatalyst shows excellent recyclability for water decontamination,making it a promising candidate to purify aquatic contaminants.展开更多
Molybdenum (VI) complex, namely molybdenum dioxobis(2,4-pentanedione) [MoO2(acac)2] used as epoxidation catalyst species, was synthesized and characterized by elemental analysis and infrared spectrum. Polystyrene-supp...Molybdenum (VI) complex, namely molybdenum dioxobis(2,4-pentanedione) [MoO2(acac)2] used as epoxidation catalyst species, was synthesized and characterized by elemental analysis and infrared spectrum. Polystyrene-supported molybdenum dioxobis(2,4-pentanedione) [MoO2(acac)2] for synthesis of epoxycyclohexane was prepared by phase transfer catalysis method. Effects of various factors in synthesis of epoxycyclohexane by reaction of cyclohexene and t-BuOOH in the atmosphere of nitrogen catalyzed by polystyrene-supported MoO2(acac)2 were also investigated. Under the following conditions, n(cyclohexene):n(t-BuOOH)=3.5:l (based on 0.1 mol of t-BuOOH), volume of solvent -10ml, reaction temperature -80℃, reaction time -60min, and mass of molybdenum in the catalyst -2.30×0^(-3)g, the yield of epoxycyclohexane on the basis of t-BuOOH is over 99.5%, and the purity of epoxycyclohexane is about 99.9% by gas chromatogram(GC) analysis.展开更多
A greenhouse pot experiment was conducted with hybrid rice (Ocyza Sativa L.) in order to stndy Nstatus and utilization in the rhizosphere of rice. The experiment was composed of three treatments: withoutN,  ̄(15)NH_(4...A greenhouse pot experiment was conducted with hybrid rice (Ocyza Sativa L.) in order to stndy Nstatus and utilization in the rhizosphere of rice. The experiment was composed of three treatments: withoutN,  ̄(15)NH_(4-) N and  ̄(15) NO_(3-) N. Plant roots were separated from the soil by a nylon cloth, and 1 mm incrementsof soil, moving laterally away from the roots, were taken and analyzed for various N froms. The labelled Nin the plants ranged from 67.51% to 69.24% of the total amount of N absorbed by the rice seedlings withthe labelled fertilizer N treatments. This shows that the N in the plants came mainly from the fertilizers.However, the N absorbed by the rice seedlings accounted for less than 35% of the total amount of the Ndepletion in the soil near the rice roots, indicating an important N loss in the rhizosphere of rice. The soilredox potential (all treatments) and the concentration of the labelled NO_3-N (the labelled NH_(4-_)N treatmentonly) decreased as the distance from the rice roots increased in the rhizosphere of rice. In contrast, theconcentration of the labelled NH_(4-) N increased a.s the distance increased in the same soil zone. These resultssuggested that nitrification occurred in the soil around the rice roots. Therefore, the reason for the N lossin the rhizosphere of rice might be the NO_3 movement into the reductive non-rhizosphere soil (submerged)where denitrification can take place.展开更多
Evapotranspiration (ET) process of plants is controlled by several factors. Besides the physiological factors of plants, height, density, LAI (leaf area index), etc., the change of meteorological factors, such as ...Evapotranspiration (ET) process of plants is controlled by several factors. Besides the physiological factors of plants, height, density, LAI (leaf area index), etc., the change of meteorological factors, such as radiation, temperature, wind and precipitation, can influence ET process evidently, thus remodeling the spatial and temporal distribution of ET. In order to illuminate the effects of meteorological factors on wetland ET, the ET of Zhalong Wetland was calculated from 1961 to 2000, the statistical relationships (models) between ET and maximum temperature (Tmax), minimum temperature (Tmin), precipitation (P) and wind speed at 2m height (U2) were established, and the sensitivity analysis of the variables in the model was performed. The results show that Tmax and Tmin are two dominating factors that influence ET markedly, and the difference of rising rate between Tmax and Tmin determines the change trend of ET. With the climatic scenarios of four General Circulation Models (GCMs), the ET from 2001 to 2060 was predicted by the statistical model. Compared to the period of 1961-2000, the water consumption by ET will increase greatly in the future. According to the scenarios, the rise of Tmax (about 1.5℃ to 3.3℃) and Tmin (about 1.7℃ to 3.5℃) will cause an additional water consumotion of 14.0%- 17.8% for reed swami). The ecological water demand in Zhalong Wetland will become more severe.展开更多
The high oxidation ability of manganese oxides or soils was used to study effects of pH and coatingon Cr(Ⅲ) oxidation. The results indicated that Cr(Ⅲ) oxidation peaked in pH 4.0-6.5. The amount andrate of Cr(Ⅲ) be...The high oxidation ability of manganese oxides or soils was used to study effects of pH and coatingon Cr(Ⅲ) oxidation. The results indicated that Cr(Ⅲ) oxidation peaked in pH 4.0-6.5. The amount andrate of Cr(Ⅲ) being oxidized by uncoated δ-MnO2 were larger than those by Fe oxide- or CaCO3-coatedone. Inorganic Cr(Ⅲ) was more easi1y oxidized by MnO2 than organic complex Cr(Ⅲ) due to differentsurface affinities. Precipitated Cr(Ⅲ) and adsorbed Cr(Ⅲ) might be transferred onto MnO2 surface andthen oxidized to Cr(VI).展开更多
In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. B...In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst.展开更多
TiO2-seashell composites prepared via a sol-gel method were used to generate carbonate radicals(·CO3–) under solar light irradiation. ·CO3–, a selective radical, was employed to degrade the target tetracyc...TiO2-seashell composites prepared via a sol-gel method were used to generate carbonate radicals(·CO3–) under solar light irradiation. ·CO3–, a selective radical, was employed to degrade the target tetracycline hydrochloride contaminant. A series of characterizations was carried out to study the structure and composition of the synthesized TiO2-seashell composite. This material exhibits excellent solar light-driven photochemical activity in the decomposition of tetracycline hydrochloride. The possible pathway and mechanism for the photodegradation process were proposed on the basis of high-resolution electrospray ionization time-of-flight mass spectrometry experiments. Finally, we investigated the reusability of the TiO2-seashell composite. This study is expected to provide a new facile pathway for the application of ·CO3– radicals to degrade special organic pollutants in water.展开更多
基金Supported by National Basic Research Program of China (973 Program) (Grant No. 2007CB714101)~~
文摘Modified classical Boltzmann entropy as generalized entropy, then proposed Maximum Generalized Entropy Principle fusing physics and biology, and established a new model for biological origin and evolutions based on this principle, finally took protein evolution for an example to analyze. The model provided some reference for biological complexity research.
基金Supported by National Barley Industrial Technology System of China(CARS-05)National Natural Science Foundation of China(No.31260326)~~
文摘[Objective] This study aimed to analyze the interaction between genotype of flavonoids of barley grain and environment, to increase the flavonoid content of barley grain in cultivation and breeding. [Method] In this study, the content of cate- chin, myricetin, quercetin and kaempferol of barley grain planted in Kunming, Qujing and Baoshan were determined by HPLC, and the genotype, environment, genotype- environment interaction of the flavonoid content of barley grain were analyzed. [Result] According to the experimental results, the genotype variance, environmental variance and G x E interaction variance of catechin and kaempferol contents show the same trend: genotype variation 〉 environmental variation 〉 G × E interaction variation, which all reach a extremely significant level; the genotype variance, envi- ronmental variance and G × E interaction variance of quercetin and total flavonoid contents show the same trend: genetype variation 〉 G × E interaction variation 〉 environmental variation, which all reach a extremely significant level; the genotype variance and environmental variance of myricetin content both reach a extremely sig- nificant level, while the G × E interaction variance reaches a significant level, showing an order of genotype variation 〉 environmental variation 〉 G × E interaction variation; the genotype variance, environmental variance and G x E interaction vari- ance of total flavonoid content show an order of genotype variation 〉 environmental variation 〉 G × E interaction variation. Among different barley varieties, Ziguang- mangluoerling and Kuanyingdamai in Qujing, Kunming and Baoshan have relatively high content of quercetin, while other barley varieties barely contain any quercetin. The grains of Ziguangmangluoerling and Kuanyingdamai are purple, while the grains of other barley varieties are yellow. [Conclusion] Four main flavonoids and the total flavonoids of barley grain are mainly under genetic control and affected by genetic- environment interactions; the purple barley grains contain high content of quercetin.
基金Supported by Qinglan Project Foundation of Jiangsu Province and Doctoral Dissertation Innovate Foundation of Nanjing Uni-versity of Technology (No.BSCS200508).
文摘Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-gen gas flow rate on the conversion of cyclohexene and selectivity of cyclohexene oxide were investigated and dis-cussed, and the optimal operation condition was found, under which 95.2% conversion of cyclohexene and 90.7% selectivity of cyclohexene oxide were achieved. The ultrasonic airlift loop reactor utilizes the synergistic effect of sonochemsitry and higher oxygen transfer rate. Possible reaction mechanisms were outlined and the reason of ul-trasound promotion of epoxidation reactionwas analyzed.
基金supported by the National Natural Science Foundation of China(21576050)the Natural Science Foundation of Jiangsu Province(BK20150604)~~
文摘Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts for the photosynthesis of propylene oxide via the epoxidation of propene.The Au/Ag mass ratio and reaction temperature were demonstrated to have significant effects on the catalytic activity and selectivity of propylene oxide.The optimal formation rate(68.3μmol/g·h)and selectivity(52.3%)toward propylene oxide were achieved with an Au:Ag mass ratio of4:1.Notably,the strong synergistic effect between Au and Ag resulted in superior photocatalysis of the bimetallic systems compared with those of the individual systems.A probable reaction mechanism was proposed based on the theoretical and experimental results.
基金supported by the National Natural Science Foundation of China(21876069,21707054)the Six Talent Peaks Project in Jiangsu(XCL-018)the China Postdoctoral Science Foundation(2016M601744)~~
文摘Herein,we report a unique approach towards the preparation of C-modified and N-doped TiO2 hollow spheres(C/N-TiO2).TEM,SEM,and XPS analyses were used to confirm that the carbon and nitrogen co-decorated TiO2 photocatalyst was formed.Carbon-decoration improves the visible-light absorption and speeds up the separation of the photo-generated electron-hole pairs.C/N-TiO2 not only narrows the band gap of TiO2,but also exhibits excellent photocatalytic activity for the degradation of tetracycline and tetracycline hydrochloride.In addition,the C/N-TiO2 photocatalyst shows excellent recyclability for water decontamination,making it a promising candidate to purify aquatic contaminants.
基金Supported by the Outstanding Personality Innovation Funds of Henan Province(No.0121001900).
文摘Molybdenum (VI) complex, namely molybdenum dioxobis(2,4-pentanedione) [MoO2(acac)2] used as epoxidation catalyst species, was synthesized and characterized by elemental analysis and infrared spectrum. Polystyrene-supported molybdenum dioxobis(2,4-pentanedione) [MoO2(acac)2] for synthesis of epoxycyclohexane was prepared by phase transfer catalysis method. Effects of various factors in synthesis of epoxycyclohexane by reaction of cyclohexene and t-BuOOH in the atmosphere of nitrogen catalyzed by polystyrene-supported MoO2(acac)2 were also investigated. Under the following conditions, n(cyclohexene):n(t-BuOOH)=3.5:l (based on 0.1 mol of t-BuOOH), volume of solvent -10ml, reaction temperature -80℃, reaction time -60min, and mass of molybdenum in the catalyst -2.30×0^(-3)g, the yield of epoxycyclohexane on the basis of t-BuOOH is over 99.5%, and the purity of epoxycyclohexane is about 99.9% by gas chromatogram(GC) analysis.
文摘A greenhouse pot experiment was conducted with hybrid rice (Ocyza Sativa L.) in order to stndy Nstatus and utilization in the rhizosphere of rice. The experiment was composed of three treatments: withoutN,  ̄(15)NH_(4-) N and  ̄(15) NO_(3-) N. Plant roots were separated from the soil by a nylon cloth, and 1 mm incrementsof soil, moving laterally away from the roots, were taken and analyzed for various N froms. The labelled Nin the plants ranged from 67.51% to 69.24% of the total amount of N absorbed by the rice seedlings withthe labelled fertilizer N treatments. This shows that the N in the plants came mainly from the fertilizers.However, the N absorbed by the rice seedlings accounted for less than 35% of the total amount of the Ndepletion in the soil near the rice roots, indicating an important N loss in the rhizosphere of rice. The soilredox potential (all treatments) and the concentration of the labelled NO_3-N (the labelled NH_(4-_)N treatmentonly) decreased as the distance from the rice roots increased in the rhizosphere of rice. In contrast, theconcentration of the labelled NH_(4-) N increased a.s the distance increased in the same soil zone. These resultssuggested that nitrification occurred in the soil around the rice roots. Therefore, the reason for the N lossin the rhizosphere of rice might be the NO_3 movement into the reductive non-rhizosphere soil (submerged)where denitrification can take place.
基金Under the auspices of the National Natural Science Foundation of China (No. 50139020)
文摘Evapotranspiration (ET) process of plants is controlled by several factors. Besides the physiological factors of plants, height, density, LAI (leaf area index), etc., the change of meteorological factors, such as radiation, temperature, wind and precipitation, can influence ET process evidently, thus remodeling the spatial and temporal distribution of ET. In order to illuminate the effects of meteorological factors on wetland ET, the ET of Zhalong Wetland was calculated from 1961 to 2000, the statistical relationships (models) between ET and maximum temperature (Tmax), minimum temperature (Tmin), precipitation (P) and wind speed at 2m height (U2) were established, and the sensitivity analysis of the variables in the model was performed. The results show that Tmax and Tmin are two dominating factors that influence ET markedly, and the difference of rising rate between Tmax and Tmin determines the change trend of ET. With the climatic scenarios of four General Circulation Models (GCMs), the ET from 2001 to 2060 was predicted by the statistical model. Compared to the period of 1961-2000, the water consumption by ET will increase greatly in the future. According to the scenarios, the rise of Tmax (about 1.5℃ to 3.3℃) and Tmin (about 1.7℃ to 3.5℃) will cause an additional water consumotion of 14.0%- 17.8% for reed swami). The ecological water demand in Zhalong Wetland will become more severe.
文摘The high oxidation ability of manganese oxides or soils was used to study effects of pH and coatingon Cr(Ⅲ) oxidation. The results indicated that Cr(Ⅲ) oxidation peaked in pH 4.0-6.5. The amount andrate of Cr(Ⅲ) being oxidized by uncoated δ-MnO2 were larger than those by Fe oxide- or CaCO3-coatedone. Inorganic Cr(Ⅲ) was more easi1y oxidized by MnO2 than organic complex Cr(Ⅲ) due to differentsurface affinities. Precipitated Cr(Ⅲ) and adsorbed Cr(Ⅲ) might be transferred onto MnO2 surface andthen oxidized to Cr(VI).
基金Project (Nos. 90610005 and 20576120) supported by the National Natural Science Foundation of China
文摘In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst.
文摘TiO2-seashell composites prepared via a sol-gel method were used to generate carbonate radicals(·CO3–) under solar light irradiation. ·CO3–, a selective radical, was employed to degrade the target tetracycline hydrochloride contaminant. A series of characterizations was carried out to study the structure and composition of the synthesized TiO2-seashell composite. This material exhibits excellent solar light-driven photochemical activity in the decomposition of tetracycline hydrochloride. The possible pathway and mechanism for the photodegradation process were proposed on the basis of high-resolution electrospray ionization time-of-flight mass spectrometry experiments. Finally, we investigated the reusability of the TiO2-seashell composite. This study is expected to provide a new facile pathway for the application of ·CO3– radicals to degrade special organic pollutants in water.