A 3-D field line integration code, TRIP3D has been modified to model stochastic magnetic perturbation produced by a resistive wall mode, error field ( RWMEF ) coil in the NSTX tokamak with very low aspect ratio. The...A 3-D field line integration code, TRIP3D has been modified to model stochastic magnetic perturbation produced by a resistive wall mode, error field ( RWMEF ) coil in the NSTX tokamak with very low aspect ratio. The RWMEF-coil has two turns, which may produce stochastic fields with the toroidal mode number of n = 1 or 3. In this study, it is found that the stochastic field of n = 3 is larger than that of n=-1 for the same coil current. Two divertor discharges with lower single null ( LSN ) and double null ( DN ) configurations in the NSTX have been modeled with different RWMEF-coil currents and toroidal modes.展开更多
For realizing non-contact steering swimming of a capsule robot in curved environment filled with viscous liquid, based on spa- tial orthogonal superposition theorem of alternating magnetic vectors, an innovative physi...For realizing non-contact steering swimming of a capsule robot in curved environment filled with viscous liquid, based on spa- tial orthogonal superposition theorem of alternating magnetic vectors, an innovative physical method is proposed, which em- ploys three-axis orthogonal square Helmholtz coils fed with three phase sine currents to create a universal uniform magnetic spin vector as energy source. According to the antiphase sine current superposition theorem generalized in this paper, an effec- tive control method for successively adjusting the orientation and the rotating direction of the universal magnetic spin vector is proposed. For validating its feasibility and controllability, three-axis Helmholtz coils, power source and an innovative capsule robot prototype were manufactured, experiments were conducted in both spiral pipe and animal intestine. It was demonstrated that the orientation and the rotational direction of the universal uniform-magnetic spin vector can be adjusted successively through digital control and steering swimming of the capsule robot in spiral intestine can be achieved successfully. The breakthrough of the universal rotating uniform-magnetic vector will push forward the development of modern physics and biomedical engineering展开更多
文摘A 3-D field line integration code, TRIP3D has been modified to model stochastic magnetic perturbation produced by a resistive wall mode, error field ( RWMEF ) coil in the NSTX tokamak with very low aspect ratio. The RWMEF-coil has two turns, which may produce stochastic fields with the toroidal mode number of n = 1 or 3. In this study, it is found that the stochastic field of n = 3 is larger than that of n=-1 for the same coil current. Two divertor discharges with lower single null ( LSN ) and double null ( DN ) configurations in the NSTX have been modeled with different RWMEF-coil currents and toroidal modes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60875064,61175102,and 51277018)
文摘For realizing non-contact steering swimming of a capsule robot in curved environment filled with viscous liquid, based on spa- tial orthogonal superposition theorem of alternating magnetic vectors, an innovative physical method is proposed, which em- ploys three-axis orthogonal square Helmholtz coils fed with three phase sine currents to create a universal uniform magnetic spin vector as energy source. According to the antiphase sine current superposition theorem generalized in this paper, an effec- tive control method for successively adjusting the orientation and the rotating direction of the universal magnetic spin vector is proposed. For validating its feasibility and controllability, three-axis Helmholtz coils, power source and an innovative capsule robot prototype were manufactured, experiments were conducted in both spiral pipe and animal intestine. It was demonstrated that the orientation and the rotational direction of the universal uniform-magnetic spin vector can be adjusted successively through digital control and steering swimming of the capsule robot in spiral intestine can be achieved successfully. The breakthrough of the universal rotating uniform-magnetic vector will push forward the development of modern physics and biomedical engineering