Extreme weather conditions occur at an increasing rate as evidenced by higher frequency of hurricanes and more extreme precipitation and temperature anomalies. Such extreme environmental conditions will have important...Extreme weather conditions occur at an increasing rate as evidenced by higher frequency of hurricanes and more extreme precipitation and temperature anomalies. Such extreme environmental conditions will have important implications for all living organisms through greater frequency of reproductive failure and reduced adult survival. We review examples of reproductive failure and reduced survival related to extreme weather conditions. Phenotypic plasticity may not be sufficient to allow adaptation to extreme weather for many animals. Theory predicts reduced reproductive effort as a response to increased stochasticity. We predict that patterns of natural selection will change towards truncation selection as environmental conditions become more extreme. Such changes in patterns of selection may facilitate adaptation to extreme events. However, effects of selection on reproductive effort are difficult to detect. We present a number of predictions for the effects of extreme weather conditions in need of empirical tests. Finally, we suggest a number of empirical reviews that could improve our ability to judge the effects of extreme environmental conditions on life history [Current Zoology 57 (3): 375-389, 2011].展开更多
Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single...Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plas- ticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation) and two of which do not (standing epigenetic variation, plastic compensation). Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for under- standing evolutionary change展开更多
Effective signal transmission is essential for communication. In environments where signal transmission is highly variable, signalers may utilize complex signals, which incorporate multiple components and modalities, ...Effective signal transmission is essential for communication. In environments where signal transmission is highly variable, signalers may utilize complex signals, which incorporate multiple components and modalities, to maintain effective communication. Male Rabidosa rabida wolf spiders produce complex courtship signals, consisting of both visual and seismic components. We test the hypothesis that the complex signaling of R. rabida contributes to male reproductive success in variable signaling environments. We first examine the condition-dependence of foreleg ornamentation (a presumed visual signal) and seismic signal components and find that both may provide potentially redundant information on foraging history. Next, we assessed reproductive success across manipulated signaling environments that varied in the effectiveness of visual and/or seismic signal transmission. In environments where only one signal could be successfully transmitted (e.g., visual or seismic), pairs were still able to successfully copulate. Additionally, we found that males altered their courtship display depending on the current signaling environment. Specifically, males reduced their use of a visual display component in signaling environments where visual signal transmission was ablated. Incorporating signals in multiple modalities not only enables R. rabida males to maintain copulation success across variable signaling environments, but it also enables males to adjust their composite courtship display to current signaling conditions .展开更多
文摘Extreme weather conditions occur at an increasing rate as evidenced by higher frequency of hurricanes and more extreme precipitation and temperature anomalies. Such extreme environmental conditions will have important implications for all living organisms through greater frequency of reproductive failure and reduced adult survival. We review examples of reproductive failure and reduced survival related to extreme weather conditions. Phenotypic plasticity may not be sufficient to allow adaptation to extreme weather for many animals. Theory predicts reduced reproductive effort as a response to increased stochasticity. We predict that patterns of natural selection will change towards truncation selection as environmental conditions become more extreme. Such changes in patterns of selection may facilitate adaptation to extreme events. However, effects of selection on reproductive effort are difficult to detect. We present a number of predictions for the effects of extreme weather conditions in need of empirical tests. Finally, we suggest a number of empirical reviews that could improve our ability to judge the effects of extreme environmental conditions on life history [Current Zoology 57 (3): 375-389, 2011].
文摘Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plas- ticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation) and two of which do not (standing epigenetic variation, plastic compensation). Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for under- standing evolutionary change
基金Acknowledgements We would like to thank J. Rovner and W. Tietjen for their pioneering work on this wonderful species. We thank A. Basolo, L. Sullivan-Beckers, and O. Beckers for helpful comments on earlier versions of this manuscript, and R. Willemart, S. Schwartz, E Shamble, K. Fowler-Finn, A. Rundus, and D. Wickwire for help in collection of spiders. Spider body measurements were taken by B. Cook. This work was supported by UNL SBS special funds and GAANN fellowship research funds to DJW and the National Science Foundation (10S -0643179) to EAH.
文摘Effective signal transmission is essential for communication. In environments where signal transmission is highly variable, signalers may utilize complex signals, which incorporate multiple components and modalities, to maintain effective communication. Male Rabidosa rabida wolf spiders produce complex courtship signals, consisting of both visual and seismic components. We test the hypothesis that the complex signaling of R. rabida contributes to male reproductive success in variable signaling environments. We first examine the condition-dependence of foreleg ornamentation (a presumed visual signal) and seismic signal components and find that both may provide potentially redundant information on foraging history. Next, we assessed reproductive success across manipulated signaling environments that varied in the effectiveness of visual and/or seismic signal transmission. In environments where only one signal could be successfully transmitted (e.g., visual or seismic), pairs were still able to successfully copulate. Additionally, we found that males altered their courtship display depending on the current signaling environment. Specifically, males reduced their use of a visual display component in signaling environments where visual signal transmission was ablated. Incorporating signals in multiple modalities not only enables R. rabida males to maintain copulation success across variable signaling environments, but it also enables males to adjust their composite courtship display to current signaling conditions .