In this article,the vertical components of the continuous waveform data of 90 seismic stations in Ningxia and its adjacent regions recorded from January 2012 to December 2013 are used to obtain the Rayleigh surface wa...In this article,the vertical components of the continuous waveform data of 90 seismic stations in Ningxia and its adjacent regions recorded from January 2012 to December 2013 are used to obtain the Rayleigh surface wave group velocity dispersion images in the study area( 101°- 112°E,31°-42°N) according to the method of noise imaging,with period between 6s - 50s and resolution of 0.5°. The Yinchuan basin in the 6s - 26 s period obviously shows a low velocity anomaly,which is not uniform and has a tendency to gradually weaken; the Guanzhong Basin in 6 s-22s shows a strip of low velocity anomaly and demonstrates a transverse inhomogeneity,where velocity in the southeast is slightly faster than that in the northwest. In the 30s - 50s period it shows that in the Yinchuan graben basin and its southern area,there is a large low velocity anomaly area,which moves from northeast to southwest. It shows that between the main active tectonic zones,like mountains and basins,there are obvious geomorphologic boundaries. For example,the deep fault near Liupan Mountain is the dividing line between two large tectonic units of eastern and western of China. The inversion results have good correlation with the geological structure and the stratigraphic landform. The results are consistent with the results of artificial seismic section tomography across the basin. It provides an important basis for the dynamics of active tectonic zones and the mechanism of earthquake occurrence in this area.展开更多
We perform Rayleigh wave tomography in east Guangdong and its surrounding regions by applying the ambient noise method to broadband data recorded at 26 stations from Guangdong,Fujian and Jiangxi Digital Seismic Networ...We perform Rayleigh wave tomography in east Guangdong and its surrounding regions by applying the ambient noise method to broadband data recorded at 26 stations from Guangdong,Fujian and Jiangxi Digital Seismic Networks.Cross-correlations of verticalcomponent ambient noise data are computed in one-day segments and stacked over seven months from March to September,2011.Then Rayleigh wave group dispersion curves are measured using the frequency-time analysis method.Group velocity maps at periods from5s to 15s are inverted.The resulting group velocity maps generally show good correlation with tectonic features,reflecting the velocity variations in the shallow crust.The basin areas are clearly resolved with lower group velocities at the short periods due to thick sedimentary layers,and the mountain areas with higher group velocities due to thin sedimentary layers.The variations of group velocity on the map can draw out the distribution of basins and mountains in study areas.The geothermal field can change the group velocity obviously,and lower group velocities are always found in high geothermal areas.The velocity maps indicate that a low-velocity layer may be found in the study areas.展开更多
The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient no...The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient noise recordings. The array transverses the southern part of the central North China Craton(CNCC) and western NCC(WNCC) from east to west and reaches the adjacent Qilian Orogenic Belt(QOB). The phase velocity structures of Rayleigh waves at 5–35 s and Love waves at 5–30 s were measured. The crustal S-velocity structures(Vsv and Vsh) were constructed from the dispersion data(Rayleigh and Love waves,respectively) from point-wise linear inversion with prior information of the Moho depth and average crustal Vp/Vs ratio. The radial anisotropy along the profile was calculated based on the discrepancies between Vsv and Vsh as 2×(Vsh.Vsv)/(Vsh+Vsv). The results show distinct structural variations in the three major tectonic units. The crustal architecture in the southern CNCC is complicated and featured with wide-distributed low-velocity zones(LVZs), which may be a reflection of crustal modification resulting from Mesozoic-Cenozoic tectonics and magmatic activities. The pronounced positive radial anisotropy in the lower-lowermost crust beneath the Shanxi-Shaanxi Rift and the neighboring areas could be attributed to the underplating of mantle mafic-ultramafic materials during the Mesozoic-Cenozoic tectonic activation. In southern Ordos, the overall weak lateral velocity variations, relative high velocity and large-scale positive radial anisotropy in mid-lower crust probably suggest that the current crustal structure has preserved its Precambrian tectonic characteristics. The low-velocity westward-dipping sedimentary strata in the Ordos Block could be attributed to the Phanerozoic whole-basin tilting and the uneven erosion since late Cretaceous. Integrated with previous studies, the systematic comparison of crustal architecture was made between the southern and northern part of CNCC-WNCC. The similarities and differences may have a relation with the tectonic events and deformation histories experienced before and after the Paleoproterozoic amalgamation of the NCC. The nearly flat mid-crustal LVZ beneath the southern QOB weakens gradually as it extends to the east, which is a feature probably associated with crustal vertical superpositionand ductile shear deformation under the intensive compressional regime due to the northeastward growth and expansion of the Tibetan Plateau.展开更多
基金sponsored by the Earth quake Science and Technology Spark Plan(XH14051YSX)the Natural Science Foundation of Ningxia,China(NZ15213)
文摘In this article,the vertical components of the continuous waveform data of 90 seismic stations in Ningxia and its adjacent regions recorded from January 2012 to December 2013 are used to obtain the Rayleigh surface wave group velocity dispersion images in the study area( 101°- 112°E,31°-42°N) according to the method of noise imaging,with period between 6s - 50s and resolution of 0.5°. The Yinchuan basin in the 6s - 26 s period obviously shows a low velocity anomaly,which is not uniform and has a tendency to gradually weaken; the Guanzhong Basin in 6 s-22s shows a strip of low velocity anomaly and demonstrates a transverse inhomogeneity,where velocity in the southeast is slightly faster than that in the northwest. In the 30s - 50s period it shows that in the Yinchuan graben basin and its southern area,there is a large low velocity anomaly area,which moves from northeast to southwest. It shows that between the main active tectonic zones,like mountains and basins,there are obvious geomorphologic boundaries. For example,the deep fault near Liupan Mountain is the dividing line between two large tectonic units of eastern and western of China. The inversion results have good correlation with the geological structure and the stratigraphic landform. The results are consistent with the results of artificial seismic section tomography across the basin. It provides an important basis for the dynamics of active tectonic zones and the mechanism of earthquake occurrence in this area.
基金funded by the 2011 Earthquake Tracking Project of CEA(Grant No.2011020105)the open fund project of State Key Laboratory of Earthquake Dynamics(Grant No.LED2011B04)
文摘We perform Rayleigh wave tomography in east Guangdong and its surrounding regions by applying the ambient noise method to broadband data recorded at 26 stations from Guangdong,Fujian and Jiangxi Digital Seismic Networks.Cross-correlations of verticalcomponent ambient noise data are computed in one-day segments and stacked over seven months from March to September,2011.Then Rayleigh wave group dispersion curves are measured using the frequency-time analysis method.Group velocity maps at periods from5s to 15s are inverted.The resulting group velocity maps generally show good correlation with tectonic features,reflecting the velocity variations in the shallow crust.The basin areas are clearly resolved with lower group velocities at the short periods due to thick sedimentary layers,and the mountain areas with higher group velocities due to thin sedimentary layers.The variations of group velocity on the map can draw out the distribution of basins and mountains in study areas.The geothermal field can change the group velocity obviously,and lower group velocities are always found in high geothermal areas.The velocity maps indicate that a low-velocity layer may be found in the study areas.
基金supported by the National Natural Science Foundation of China(Grant Nos.41225016,91414301&41688103)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB03010802)
文摘The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient noise recordings. The array transverses the southern part of the central North China Craton(CNCC) and western NCC(WNCC) from east to west and reaches the adjacent Qilian Orogenic Belt(QOB). The phase velocity structures of Rayleigh waves at 5–35 s and Love waves at 5–30 s were measured. The crustal S-velocity structures(Vsv and Vsh) were constructed from the dispersion data(Rayleigh and Love waves,respectively) from point-wise linear inversion with prior information of the Moho depth and average crustal Vp/Vs ratio. The radial anisotropy along the profile was calculated based on the discrepancies between Vsv and Vsh as 2×(Vsh.Vsv)/(Vsh+Vsv). The results show distinct structural variations in the three major tectonic units. The crustal architecture in the southern CNCC is complicated and featured with wide-distributed low-velocity zones(LVZs), which may be a reflection of crustal modification resulting from Mesozoic-Cenozoic tectonics and magmatic activities. The pronounced positive radial anisotropy in the lower-lowermost crust beneath the Shanxi-Shaanxi Rift and the neighboring areas could be attributed to the underplating of mantle mafic-ultramafic materials during the Mesozoic-Cenozoic tectonic activation. In southern Ordos, the overall weak lateral velocity variations, relative high velocity and large-scale positive radial anisotropy in mid-lower crust probably suggest that the current crustal structure has preserved its Precambrian tectonic characteristics. The low-velocity westward-dipping sedimentary strata in the Ordos Block could be attributed to the Phanerozoic whole-basin tilting and the uneven erosion since late Cretaceous. Integrated with previous studies, the systematic comparison of crustal architecture was made between the southern and northern part of CNCC-WNCC. The similarities and differences may have a relation with the tectonic events and deformation histories experienced before and after the Paleoproterozoic amalgamation of the NCC. The nearly flat mid-crustal LVZ beneath the southern QOB weakens gradually as it extends to the east, which is a feature probably associated with crustal vertical superpositionand ductile shear deformation under the intensive compressional regime due to the northeastward growth and expansion of the Tibetan Plateau.