滑坡易发性评价是滑坡灾害防治的重要手段之一,而不合理的滑坡负样本会影响滑坡易发性评价,从而影响到滑坡灾害的防治,因此提供一种合理的负样本选取方法变得尤为关键。以西藏米林市的古滑坡为例,选择高程、坡度、坡向、坡位、距道路距...滑坡易发性评价是滑坡灾害防治的重要手段之一,而不合理的滑坡负样本会影响滑坡易发性评价,从而影响到滑坡灾害的防治,因此提供一种合理的负样本选取方法变得尤为关键。以西藏米林市的古滑坡为例,选择高程、坡度、坡向、坡位、距道路距离、距断层距离、距水系距离、地形起伏度、地层岩性、土地利用类型10类环境因子,使用Relief算法计算环境因子的贡献值并依据贡献值优化选择环境因子;基于环境因子优化的目标空间外向化采样法(target space exteriorization sampling,简称TSES)选择负样本,作为性能优异的随机森林模型的输入变量;之后结合优化的环境因子和正或负样本预测米林市的滑坡易发性,并用混淆矩阵和ROC曲线评价构建模型的性能。为检验环境因子优化的TSES法的有效性和先进性,采用耦合信息量法和TSES法选择滑坡负样本并构建随机森林模型,与环境因子优化的TSES法构建的随机森林模型进行对比研究。结果表明,环境因子优化的TSES法构建的随机森林模型的评价效果较好,其ACC为93.7%、AUC为0.987,均高于耦合信息量、TSES法构成的模型。环境因子优化的TSES法能够提高模型的精度,解决多因子作为约束条件取样中因子选取的问题,为滑坡易发性评价采集负样本提供了新的思路。展开更多
With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation sa...With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.展开更多
文摘滑坡易发性评价是滑坡灾害防治的重要手段之一,而不合理的滑坡负样本会影响滑坡易发性评价,从而影响到滑坡灾害的防治,因此提供一种合理的负样本选取方法变得尤为关键。以西藏米林市的古滑坡为例,选择高程、坡度、坡向、坡位、距道路距离、距断层距离、距水系距离、地形起伏度、地层岩性、土地利用类型10类环境因子,使用Relief算法计算环境因子的贡献值并依据贡献值优化选择环境因子;基于环境因子优化的目标空间外向化采样法(target space exteriorization sampling,简称TSES)选择负样本,作为性能优异的随机森林模型的输入变量;之后结合优化的环境因子和正或负样本预测米林市的滑坡易发性,并用混淆矩阵和ROC曲线评价构建模型的性能。为检验环境因子优化的TSES法的有效性和先进性,采用耦合信息量法和TSES法选择滑坡负样本并构建随机森林模型,与环境因子优化的TSES法构建的随机森林模型进行对比研究。结果表明,环境因子优化的TSES法构建的随机森林模型的评价效果较好,其ACC为93.7%、AUC为0.987,均高于耦合信息量、TSES法构成的模型。环境因子优化的TSES法能够提高模型的精度,解决多因子作为约束条件取样中因子选取的问题,为滑坡易发性评价采集负样本提供了新的思路。
基金supported in part by the Guangxi Power Grid Company’s 2023 Science and Technol-ogy Innovation Project(No.GXKJXM20230169)。
文摘With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.