In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zheji...In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zhejiang Province, China, with a single pre-cut crack soaking in different chemical solutions. Based on the results of uniaxial compressive test under different chemical solutions and velocities of flow, the effect of strength and deformation characteristics and main modes of crack coalescence for cracked rocks under chemical corrosion were analyzed. The results show that the pH value and velocity of the chemical solutions both have great influence on the sandstone sample's uniaxial compressive strength and deformation characteristics. Cracked sandstone samples are tension-destructed under uniaxial compression, and the crack propagation directions are consistent with the loading direction. The phenomena of crack initiation, propagation and coalescence of sandstone are well observed. Four different crack types are identified based on the crack propagation mechanism by analyzing the ultimate failure modes of sandstone containing a single pre-cut fissure. The failure process of specimen in air is similar with the specimen under chemical solutions, however, the initial time of crack occuring in specimen under chemical solutions is generally earlier than that in the natural specimen, and the crack propagation and coalescence process of specimen under chemical solutions are longer than those of the natural specimen due to softening of structure of rock caused by hydro-chemical action. Immersion velocity of flow and chemical solutions does not have influence on the ultimate modes of crack coalescence.展开更多
The profiling method is the first method to select in measuring the remote-sensing reflectance. In the light of the characteristics of China’s coastal waters, we develop a new method to compensate the environment’s ...The profiling method is the first method to select in measuring the remote-sensing reflectance. In the light of the characteristics of China’s coastal waters, we develop a new method to compensate the environment’s effects with the downwelling (λ)rsi r radiance’s profile and to estimate the underwater remote-sensing reflectance r. (λ)rsT he result indicates that the relative deviation of repetitious r in one station is around 10 %.展开更多
Environmental problems caused by the development of nanotechnology have threatened human health. Investigating the biomedical effects of nanomaterials can help to solve these environmental safety issues. In studies on...Environmental problems caused by the development of nanotechnology have threatened human health. Investigating the biomedical effects of nanomaterials can help to solve these environmental safety issues. In studies on the biomedical effects of nanomaterials, several types of novel nanoscale probes that allow reliable, sensitive, accurate and rapid biomedical detection have emerged. We summarize recent developments in three categories of these nanoprobes, including noble metal nanocluster probes, carbon-based nanostructured probes, and unnatural amino acid-based probes. Besides reviewing the utility of different nanoprobes in cell imaging and protein detection, we also discuss the molecular mechanism of nanoprobe detection. Perspectives of novel nanoprobe design based on molecular details of biomedical detection are presented.展开更多
基金Projects(10472130,41202225) supported by the National Natural Science Foundation of China
文摘In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zhejiang Province, China, with a single pre-cut crack soaking in different chemical solutions. Based on the results of uniaxial compressive test under different chemical solutions and velocities of flow, the effect of strength and deformation characteristics and main modes of crack coalescence for cracked rocks under chemical corrosion were analyzed. The results show that the pH value and velocity of the chemical solutions both have great influence on the sandstone sample's uniaxial compressive strength and deformation characteristics. Cracked sandstone samples are tension-destructed under uniaxial compression, and the crack propagation directions are consistent with the loading direction. The phenomena of crack initiation, propagation and coalescence of sandstone are well observed. Four different crack types are identified based on the crack propagation mechanism by analyzing the ultimate failure modes of sandstone containing a single pre-cut fissure. The failure process of specimen in air is similar with the specimen under chemical solutions, however, the initial time of crack occuring in specimen under chemical solutions is generally earlier than that in the natural specimen, and the crack propagation and coalescence process of specimen under chemical solutions are longer than those of the natural specimen due to softening of structure of rock caused by hydro-chemical action. Immersion velocity of flow and chemical solutions does not have influence on the ultimate modes of crack coalescence.
文摘The profiling method is the first method to select in measuring the remote-sensing reflectance. In the light of the characteristics of China’s coastal waters, we develop a new method to compensate the environment’s effects with the downwelling (λ)rsi r radiance’s profile and to estimate the underwater remote-sensing reflectance r. (λ)rsT he result indicates that the relative deviation of repetitious r in one station is around 10 %.
基金the National Natural Science Foundation of China (11404333, 31571026)the National Key Basic Research Program of China (2013CB933704)
文摘Environmental problems caused by the development of nanotechnology have threatened human health. Investigating the biomedical effects of nanomaterials can help to solve these environmental safety issues. In studies on the biomedical effects of nanomaterials, several types of novel nanoscale probes that allow reliable, sensitive, accurate and rapid biomedical detection have emerged. We summarize recent developments in three categories of these nanoprobes, including noble metal nanocluster probes, carbon-based nanostructured probes, and unnatural amino acid-based probes. Besides reviewing the utility of different nanoprobes in cell imaging and protein detection, we also discuss the molecular mechanism of nanoprobe detection. Perspectives of novel nanoprobe design based on molecular details of biomedical detection are presented.