Waste reduction is gaining importance as the preferred means of pollution prevention. Reactor network synthesis is one of the key parts of chemical process synthesis. In this study, a geometric approach to reactor net...Waste reduction is gaining importance as the preferred means of pollution prevention. Reactor network synthesis is one of the key parts of chemical process synthesis. In this study, a geometric approach to reactor network synthesis for waste reduction is presented. The bases of the approach are potential environment impact (PEI) rate-law expression, PEI balance and the instantaneous value of environmental indexes. The instantaneous value can be derived using the PEI balance, PEI rate-law expression and the environmental indexes. The optimal reactor networks with the minimum generation of potential environment impact are geometrically derived by comparing with areas of the corresponding regions. From the case study involving complex reactions, the approach does not involve solving the complicated mathematical problem and can avoid the dimension limitation in the attainable region approach.展开更多
基金the Support Program for the Young Backbones of the College Teachers in Henan Province (No.[2005]461)the Key Technologies R &D Program of Henan Province (No.072102360052)
文摘Waste reduction is gaining importance as the preferred means of pollution prevention. Reactor network synthesis is one of the key parts of chemical process synthesis. In this study, a geometric approach to reactor network synthesis for waste reduction is presented. The bases of the approach are potential environment impact (PEI) rate-law expression, PEI balance and the instantaneous value of environmental indexes. The instantaneous value can be derived using the PEI balance, PEI rate-law expression and the environmental indexes. The optimal reactor networks with the minimum generation of potential environment impact are geometrically derived by comparing with areas of the corresponding regions. From the case study involving complex reactions, the approach does not involve solving the complicated mathematical problem and can avoid the dimension limitation in the attainable region approach.