Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) emissions in flue gas from two types of municipal solid waste incinerators (MSWIs) most commonly used in China were investigated in this study. The selected i...Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) emissions in flue gas from two types of municipal solid waste incinerators (MSWIs) most commonly used in China were investigated in this study. The selected incinerators include two grate-type MSWIs: MSWI-A (350 t/d) and MSWI-B 050 t/d), and two fluidized bed MSWIs: MSWI-C (400 t/d) and MSWI-D (400 t/d), which are all equipped with semi-dry lime scrubber and bag filter except MSWI-D equipped with cyclone and wet scrubber (WS) as air pollutant control device (APCD). Results indicated that the emission concentration and the international toxic equivalents (I-TEQs) of the PCDD/Fs from the stacks were in the range of 1.210-10.273 ng/Nm^3 and 0.019-0.201 ng I-TEQ/Nm^3, respectively. They were greatly lower than the emission regulation standard of PCDD/Fs in China (1.0 ng I-TEQ/Nm^3). However, only the PCDD/Fs emission level from MSWI-C was below 0.1 ng I-TEQ/Nm^3. Although the homologue profiles were distinct, the contributions of the 2,3,7,8-subsituted congeners to the total I-TEQ were similar among all the investigated MSWIs. Two major 2,3,7,8-substituted congeners, 2,3,4,7,8-PeCDF and 1,2,3,7,8-PeCDD, account for 47% and 9% (average values) of the total I-TEQ values, respectively. The correlation between PCDD/Fs levels and composition of flue gas was also discussed.展开更多
Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. T...Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parameter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at - 86 mV and - 90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.展开更多
4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimen...4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimental results showed that ultrasonic intensity,saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturatinggases (Ar, O_2, air and N_2), 4-CP degradation with Ar-saturated solution was the best. However, inthe view of practical wastewater treatment, using oxygen as the saturating gas would be moreeconomical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CPdegradation rate. The 4-CP removal rate increased by around 126% within 15 min treatment. Thesynergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviouslyobserved.展开更多
A strain of hydrogen producing bacteria was immobilized by polyvinyl alcohol-boric acid method, with the addition of a small amount of calcium alginate. The immobilized cells were insensitive to the presence of traces...A strain of hydrogen producing bacteria was immobilized by polyvinyl alcohol-boric acid method, with the addition of a small amount of calcium alginate. The immobilized cells were insensitive to the presence of traces of O2. Moreover, the immobilized cells increased both the evolution rate and the yield of hydrogen production. Batch experiments with a medium containing 10 g/L glucose demonstrated the yields of hydrogen production by the immobilized and free cells were 2.14 mol/mol glucose and 1.69 mol/mol glucose, respectively. In continuous cultures at medium retention time of 2.0 h, the yield and the evolution rate of hydrogen production by the immobilized cells were 2.31 mol/mol glucose and 1 435.4 ml/(L·h) respectively. However, at medium retention time of 6.0 h, the yield and the evolution rate of hydrogen production by free cells were only 1.75 mol/mol glucose and 362.9 ml/(L·h), respectively.展开更多
Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are ...Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are the most important among the contents relevant of ecological restoration, including why, what and how to restore degraded systems. Why to restore determines whether or not the degraded ecological systems should be restored. What to restore is the goal of ecological restoration. The explicit goal of ecological restoration is necessary to guide ecological restoration workers in pursuit of excellence and prevent restoration from being swamped by purely technological activities. And how to restore means the methods and steps we should apply. To ensure the final success of ecological restoration, restored sites should be monitored and managed for long time to determine whether the selected methods are appropriate, and can be remedy better. Only to deal with these effectively, ecological restoration would be the hope for the future.展开更多
State space approach is an effective method to mass-exchange network (MEN) synthesis. By decomposing the network into two interactive parts, a distribution network and a process operator, the synthesis problem can be ...State space approach is an effective method to mass-exchange network (MEN) synthesis. By decomposing the network into two interactive parts, a distribution network and a process operator, the synthesis problem can be formulated into a mixed integer nonlinear programming (MINLP) model. In this article, a generalized state space model based on typical MEN is established and verified in two cases. A new asymmetrical operator and cost index are also adopted to speed up the solution process. The results demonstrate the efficiency of the proposed approach.展开更多
Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies fo...Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies for nitrobenzene, permanganate index, turbidity and ammonia were investigated. Effects of shock loading and SEM (Scanning Electron Microscope) observation on BAC were studied. Backwashing and its intensity of BAC were also discussed. The results showed that BAC took short time to start up and recover to the normal condition after shock loading. The shock loading studies showed that the removal efficiency of BAC was not completely inhibited even at high concentration of nitrobenzene. Backwashing performed once every 10-20 d, or an average of 15 d. Backwashing intensity was 12-14 L/(s·m2) with air and 3-4 L/(s·m2) with water.展开更多
A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through th...A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min^-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm^2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m^3/h.展开更多
After the erection of Three-Gorge Reservoir, the water environment in the reservoir area will be turned into water bodies like lakes, and the self-clarification ability of water will also be much slower than ever. Now...After the erection of Three-Gorge Reservoir, the water environment in the reservoir area will be turned into water bodies like lakes, and the self-clarification ability of water will also be much slower than ever. Now, the quality of water in most segments in upper reaches of Yangtze River cannot meet the requirements of l-ll class Environment Quality Standard (GHZB1-1999). In Yangtze River, dialing River and Wujiang River, the main indexes such as colon bacillus, nonionic ammonia, chemical oxygen demand (COD), petroleum, phenol, total phosphorus (TP), heavy metal, etc., have exceeded the standard limits. The water bodies of the reservoir area are facing serious risk of eutrophicationm. To solve that problem, a countermea-sure of multi-spot diverted treatment and separate discharge is recommended. For doing this, lots of small-scale wastewater treatment facilities employing updated activated sludge treatment technologies are to be set up. Up to now, a number of sewage treatment technologies to control eutrophication of water have been developed, which include processes of sequencing batch activated sludge (SBR), absorbing bio-degradation (AB), oxidation channel, package intermittent aeration system (PIAS), intermittent cycle extended aeration system (ICEAS), UNITANK and so on. The Effective one to be applied in the reservoir area should convey the requirements of ecological agriculture, forestry and urban planning, and be accompanied by legal support for appropriate exploitation of natural resources.展开更多
The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process.On the other hand,chlorine gas is added as a disinfectant agent in two steps,pr...The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process.On the other hand,chlorine gas is added as a disinfectant agent in two steps,pre-and post-chlorination.Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane(THM) species as a chlorination by-product.The Ismailia Canal represents the most distal downstream of the main Nile River.Thus its water contains all the proceeded pollutants discharged into the Nile.In addition,the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year.Moreover,the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals.The obtained results indicate that the canal gains up to 24.06×106 m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates,while during the rest of the year,the canal acts as an influent stream losing about 99.6×106 m3 of its water budget.The reduction of total organic carbon(TOC) and suspended particulate matters(SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products.The combination of sedimentation basins,gravel pre-filtration and slow sand filtration,and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC,SPM and heavy metals.Moreover,it reduces the use of disinfectants chemicals and lowers the treatment costs.However,this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application.展开更多
This paper propoes the water level measuring method based on the image, while the ruler used to indicate the water level is stained. The contamination of the ruler weakens or eliminates many features which are require...This paper propoes the water level measuring method based on the image, while the ruler used to indicate the water level is stained. The contamination of the ruler weakens or eliminates many features which are required for the image processing. However, the feature of the color difference between the ruler and the water surface are firmer on the environmental change compare to the other features. As the color differeaces are embossed, only the region of the ruler is limited to eliminate the noise, and the average image is produced by using several continuous frames. A histogram is then produced on the height axis of the produced intensity average image. Local peaks and local valleys are detected, and the section between the peak and valley which have the greatest change is looked for. The valley point at this very moment is used to detect the water level. The detected water level is then converted to the actual water level by using the mapping table. The proposed method is compared to the ultrasonic based method to evaluate its accuracy and efficiency on the various contaminated environments.展开更多
基金the Natural Science Foundation of Zhejiang Province (No. X206955)Zhejiang Medical and Health Research Fund (No. 2007A047)the Education Bureau of Zhejiang Prov-ince (No. N20080181), China
文摘Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) emissions in flue gas from two types of municipal solid waste incinerators (MSWIs) most commonly used in China were investigated in this study. The selected incinerators include two grate-type MSWIs: MSWI-A (350 t/d) and MSWI-B 050 t/d), and two fluidized bed MSWIs: MSWI-C (400 t/d) and MSWI-D (400 t/d), which are all equipped with semi-dry lime scrubber and bag filter except MSWI-D equipped with cyclone and wet scrubber (WS) as air pollutant control device (APCD). Results indicated that the emission concentration and the international toxic equivalents (I-TEQs) of the PCDD/Fs from the stacks were in the range of 1.210-10.273 ng/Nm^3 and 0.019-0.201 ng I-TEQ/Nm^3, respectively. They were greatly lower than the emission regulation standard of PCDD/Fs in China (1.0 ng I-TEQ/Nm^3). However, only the PCDD/Fs emission level from MSWI-C was below 0.1 ng I-TEQ/Nm^3. Although the homologue profiles were distinct, the contributions of the 2,3,7,8-subsituted congeners to the total I-TEQ were similar among all the investigated MSWIs. Two major 2,3,7,8-substituted congeners, 2,3,4,7,8-PeCDF and 1,2,3,7,8-PeCDD, account for 47% and 9% (average values) of the total I-TEQ values, respectively. The correlation between PCDD/Fs levels and composition of flue gas was also discussed.
基金Supported by the Key International Cooperation Project of NSFC, Key Project of NSFC (No. 50138010)863 Hi-Technology Research and Development Program of China (2003AA601010).
文摘Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parameter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at - 86 mV and - 90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.
基金Partly supported by the National Natural Science Foundation of China (No. 20176053)Academic Foundation of Zhejiang University of Technology (No. 20040004).
文摘4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimental results showed that ultrasonic intensity,saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturatinggases (Ar, O_2, air and N_2), 4-CP degradation with Ar-saturated solution was the best. However, inthe view of practical wastewater treatment, using oxygen as the saturating gas would be moreeconomical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CPdegradation rate. The 4-CP removal rate increased by around 126% within 15 min treatment. Thesynergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviouslyobserved.
文摘A strain of hydrogen producing bacteria was immobilized by polyvinyl alcohol-boric acid method, with the addition of a small amount of calcium alginate. The immobilized cells were insensitive to the presence of traces of O2. Moreover, the immobilized cells increased both the evolution rate and the yield of hydrogen production. Batch experiments with a medium containing 10 g/L glucose demonstrated the yields of hydrogen production by the immobilized and free cells were 2.14 mol/mol glucose and 1.69 mol/mol glucose, respectively. In continuous cultures at medium retention time of 2.0 h, the yield and the evolution rate of hydrogen production by the immobilized cells were 2.31 mol/mol glucose and 1 435.4 ml/(L·h) respectively. However, at medium retention time of 6.0 h, the yield and the evolution rate of hydrogen production by free cells were only 1.75 mol/mol glucose and 362.9 ml/(L·h), respectively.
基金UndertheauspicesoftheNationalNaturalScienceFoundationof China (No.4033100830270225)
文摘Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are the most important among the contents relevant of ecological restoration, including why, what and how to restore degraded systems. Why to restore determines whether or not the degraded ecological systems should be restored. What to restore is the goal of ecological restoration. The explicit goal of ecological restoration is necessary to guide ecological restoration workers in pursuit of excellence and prevent restoration from being swamped by purely technological activities. And how to restore means the methods and steps we should apply. To ensure the final success of ecological restoration, restored sites should be monitored and managed for long time to determine whether the selected methods are appropriate, and can be remedy better. Only to deal with these effectively, ecological restoration would be the hope for the future.
基金Supported by the National Natural Science Foundation of China (NSF 29836140).
文摘State space approach is an effective method to mass-exchange network (MEN) synthesis. By decomposing the network into two interactive parts, a distribution network and a process operator, the synthesis problem can be formulated into a mixed integer nonlinear programming (MINLP) model. In this article, a generalized state space model based on typical MEN is established and verified in two cases. A new asymmetrical operator and cost index are also adopted to speed up the solution process. The results demonstrate the efficiency of the proposed approach.
文摘Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies for nitrobenzene, permanganate index, turbidity and ammonia were investigated. Effects of shock loading and SEM (Scanning Electron Microscope) observation on BAC were studied. Backwashing and its intensity of BAC were also discussed. The results showed that BAC took short time to start up and recover to the normal condition after shock loading. The shock loading studies showed that the removal efficiency of BAC was not completely inhibited even at high concentration of nitrobenzene. Backwashing performed once every 10-20 d, or an average of 15 d. Backwashing intensity was 12-14 L/(s·m2) with air and 3-4 L/(s·m2) with water.
基金Project supported partially by the Hi-Tech Research and Devel-opment Program (863) of China (No. 2002AA529182) and the Foundation of Education Ministry of China (No. 98679) andZhejiang Provincial Natural Science Foundation of China (No. 200043)
文摘A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min^-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm^2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m^3/h.
文摘After the erection of Three-Gorge Reservoir, the water environment in the reservoir area will be turned into water bodies like lakes, and the self-clarification ability of water will also be much slower than ever. Now, the quality of water in most segments in upper reaches of Yangtze River cannot meet the requirements of l-ll class Environment Quality Standard (GHZB1-1999). In Yangtze River, dialing River and Wujiang River, the main indexes such as colon bacillus, nonionic ammonia, chemical oxygen demand (COD), petroleum, phenol, total phosphorus (TP), heavy metal, etc., have exceeded the standard limits. The water bodies of the reservoir area are facing serious risk of eutrophicationm. To solve that problem, a countermea-sure of multi-spot diverted treatment and separate discharge is recommended. For doing this, lots of small-scale wastewater treatment facilities employing updated activated sludge treatment technologies are to be set up. Up to now, a number of sewage treatment technologies to control eutrophication of water have been developed, which include processes of sequencing batch activated sludge (SBR), absorbing bio-degradation (AB), oxidation channel, package intermittent aeration system (PIAS), intermittent cycle extended aeration system (ICEAS), UNITANK and so on. The Effective one to be applied in the reservoir area should convey the requirements of ecological agriculture, forestry and urban planning, and be accompanied by legal support for appropriate exploitation of natural resources.
基金Project supported by the German Academic Exchange Services(Deutcher Akademischer Austausch Dienst (DAAD)
文摘The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process.On the other hand,chlorine gas is added as a disinfectant agent in two steps,pre-and post-chlorination.Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane(THM) species as a chlorination by-product.The Ismailia Canal represents the most distal downstream of the main Nile River.Thus its water contains all the proceeded pollutants discharged into the Nile.In addition,the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year.Moreover,the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals.The obtained results indicate that the canal gains up to 24.06×106 m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates,while during the rest of the year,the canal acts as an influent stream losing about 99.6×106 m3 of its water budget.The reduction of total organic carbon(TOC) and suspended particulate matters(SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products.The combination of sedimentation basins,gravel pre-filtration and slow sand filtration,and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC,SPM and heavy metals.Moreover,it reduces the use of disinfectants chemicals and lowers the treatment costs.However,this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application.
基金supported by the Brain Korea 21 Project in 2010,the MKE(The Ministry of Knowledge Economy,Korea)the ITRC(Information Technology Research Center)support program(NIPA-2010-(C1090-1021-0010))
文摘This paper propoes the water level measuring method based on the image, while the ruler used to indicate the water level is stained. The contamination of the ruler weakens or eliminates many features which are required for the image processing. However, the feature of the color difference between the ruler and the water surface are firmer on the environmental change compare to the other features. As the color differeaces are embossed, only the region of the ruler is limited to eliminate the noise, and the average image is produced by using several continuous frames. A histogram is then produced on the height axis of the produced intensity average image. Local peaks and local valleys are detected, and the section between the peak and valley which have the greatest change is looked for. The valley point at this very moment is used to detect the water level. The detected water level is then converted to the actual water level by using the mapping table. The proposed method is compared to the ultrasonic based method to evaluate its accuracy and efficiency on the various contaminated environments.