This study aimed to effectively reduce the cracking susceptibility of the laser clad coating by enhancing the environmental temperature during laser cladding,and reveal the residual stress distribution in different de...This study aimed to effectively reduce the cracking susceptibility of the laser clad coating by enhancing the environmental temperature during laser cladding,and reveal the residual stress distribution in different depths of the coating.The TiNi/Ti2Ni-based coatings were prepared on Ti6Al4V by laser cladding at different environmental temperatures of25,400,600and800°C.The changes in residual stress along the depth of the coatings were investigated in detail by the nanoindentation method.Results showed that the average residual stress of2.90GPa in the coating prepared at25°C was largest.With the increase in environmental temperature,the average residual stress was reduced to1.34GPa(400°C),0.70GPa(600°C)and0GPa(800°C).For all the coatings,the residual stress was increased with increasing the distance from the coating surface.Enhancing the environmental temperature can effectively reduce the cracking susceptibility of the coatings.展开更多
Stress corrosion cracking (SCC) behavior of P 110 tubing steel in simulated C02 injection well annulus environments was investigated through three-point bent tests, potentiodynamic polarization and EIS measurements....Stress corrosion cracking (SCC) behavior of P 110 tubing steel in simulated C02 injection well annulus environments was investigated through three-point bent tests, potentiodynamic polarization and EIS measurements. The results demonstrate that SCC of P110 tubing steel could occur in acidulous simulated environment, and the sensitivity of SCC increases with the decrease ofpH, as well as increase of sulfide concentration and total environmental pressure. Both anodic dissolution and hydrogen embrittlement make contributions to the SCC. Adequate concentration of corrosion inhibitor can inhibit the occurrence of SCC on account of the inhibition of localized anodic dissolution and cathodic hydrogen evolution.展开更多
基金Project (51471105) supported by the National Natural Science Foundation of ChinaProject (12SG44) supported by the "Shu Guang" Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation,ChinaProject (15KY0504) supported by the "Graduate Innovation" Project of Shanghai University of Engineering Science,China
文摘This study aimed to effectively reduce the cracking susceptibility of the laser clad coating by enhancing the environmental temperature during laser cladding,and reveal the residual stress distribution in different depths of the coating.The TiNi/Ti2Ni-based coatings were prepared on Ti6Al4V by laser cladding at different environmental temperatures of25,400,600and800°C.The changes in residual stress along the depth of the coatings were investigated in detail by the nanoindentation method.Results showed that the average residual stress of2.90GPa in the coating prepared at25°C was largest.With the increase in environmental temperature,the average residual stress was reduced to1.34GPa(400°C),0.70GPa(600°C)and0GPa(800°C).For all the coatings,the residual stress was increased with increasing the distance from the coating surface.Enhancing the environmental temperature can effectively reduce the cracking susceptibility of the coatings.
基金Project(2012AA040105)supported by the High-tech Research and Development Program of ChinaProject(2014CB643300)supported by National Basic Research Program of ChinaProject(51741034)supported by National Natural Science Foundation of China
文摘Stress corrosion cracking (SCC) behavior of P 110 tubing steel in simulated C02 injection well annulus environments was investigated through three-point bent tests, potentiodynamic polarization and EIS measurements. The results demonstrate that SCC of P110 tubing steel could occur in acidulous simulated environment, and the sensitivity of SCC increases with the decrease ofpH, as well as increase of sulfide concentration and total environmental pressure. Both anodic dissolution and hydrogen embrittlement make contributions to the SCC. Adequate concentration of corrosion inhibitor can inhibit the occurrence of SCC on account of the inhibition of localized anodic dissolution and cathodic hydrogen evolution.