期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of stress ratio on long life fatigue behavior of Ti-Al alloy under flexural loading 被引量:1
1
作者 薛红前 陶华 +1 位作者 邵忍平 B.CLAUDE 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第3期499-505,共7页
A new ultrasonic three-point bending fatigue test device was introduced to investigate fatigue life ranging up to 1010 cycles and associated fracture behavior of Ti-Al alloy. Tests were performed at a frequency of 20 ... A new ultrasonic three-point bending fatigue test device was introduced to investigate fatigue life ranging up to 1010 cycles and associated fracture behavior of Ti-Al alloy. Tests were performed at a frequency of 20 kHz with stress ratio R=0.5 and R=0.7 at ambient temperature in air. Three groups of specimens with different surface roughness were applied to investigate the effect of surface roughness on fatigue life. Furthermore, optical microscopy(OM) and scanning electron microscopy(SEM) were used for microstructure characteristic and fracture surface analysis. The S—N curves obtained show that fatigue failure occurs in the range of 105 ?1010 cycles, and the asymptote of S—N curve inclines slightly in very high cycle regime, but is not horizontal for R=0.5. Fatigue limit appears after 108 cycles for R=0.7. Surface roughness (the maximum roughness is no more than 3 μm) has no influence on the fatigue properties in the high cycle regime. A detailed investigation on fatigue fracture surface shows that the Ti-Al alloy studied here is a binary alloy in the microstructure composed of α2-Ti3Al and γ-Ti-Al with fully lamellar microstructure. Fractography shows that fatigue failures are mostly initiated on the surface of specimens, also, in very high cycle regime, subsurface fatigue crack initiation can be found. Interlamellar fatigue crack initiation is predominant in the Ti-Al alloy with fully lamellar structure. Fatigue crack growth is mainly in transgranular mode. 展开更多
关键词 挠曲疲劳 环形疲劳 S-N曲度 钛铝合金 表面粗糙度
下载PDF
Low cycle fatigue properties and cyclic deformation behavior of as-extruded AZ31 magnesium alloy 被引量:4
2
作者 S.KWON K.SONG +1 位作者 K.S.SHIN S.I.KWUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期533-539,共7页
The low cycle fatigue(LCF)properties of as-extruded AZ31 Mg alloy were investigated under total strain amplitudes in the range of 0.4%-1.2%with strain rate of 1×10- 2s -1.Due to the twinning effect in compression... The low cycle fatigue(LCF)properties of as-extruded AZ31 Mg alloy were investigated under total strain amplitudes in the range of 0.4%-1.2%with strain rate of 1×10- 2s -1.Due to the twinning effect in compression during loading and the detwinning effect during unloading,the alloy showed an asymmetric hysteresis loop.The cyclic stress response exhibited cyclic hardening at high total strain amplitudes.The cyclic deformation behaviors were discussed using the Coffin-Manson plot,which divided the plastic strain amplitudes into the tension side and the compression side.Through the LCF tests that were started from either tension or compression under a total strain amplitude of 1.0%,the interaction between the twinning effect and dislocation was analyzed.The twinning effect during the LCF test and the variation of the dislocation density were investigated using optical microscopy and transmission electron microscopy,respectively. 展开更多
关键词 AZ31 magnesium alloy low cycle fatigue TWINNING DISLOCATION
下载PDF
Influence of prior cyclic oxidation on high temperature low cycle fatigue life of bare and Pt-Al coated superalloy Rene®80
3
作者 Mohammad Mehdi Barjesteh Karim Zangeneh Madar +1 位作者 Seyed Mehdi Abbasi Kourosh Shirvani 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期43-59,共17页
The prediction of fatigue life of metallic alloys is justly accepted as one of the most important phenomena in the field of metallurgical and mechanical engineering.At elevated temperatures,oxidation of the surfaces h... The prediction of fatigue life of metallic alloys is justly accepted as one of the most important phenomena in the field of metallurgical and mechanical engineering.At elevated temperatures,oxidation of the surfaces has an effective role in the fatigue strength and ductility of the alloys.In the present work,the effect of prior cyclic oxidation on the high temperature low cycle fatigue(HTLCF)properties of nickel-based superalloy Rene®80 has been assessed in the uncoated state and in the Pt-aluminide(Pt-Al)coated condition at 930℃.To apply cyclic oxidation,simulation of engine thermal exposure was carried out by exposing coated and uncoated fatigue specimens in the burner rig(120 cycles at 1100℃).The cyclic oxidation procedure led to a changing in the coating microstructure from the dual-phase(ξ-PtAl_(2)+β-(Ni,Pt)Al)to single phase(β-(Ni,Pt)Al).Results of HTLCF tests showed an improvement in the HTLCF life around 11.5%in the unexposed coated specimen(pre-cyclic oxidation)as compared to unexposed bare specimen,while this rise for exposed coated specimen(post-cyclic oxidation)was only 5%.Although a mixed mode fracture morphology(ductile and brittle)was observed on the fracture surfaces of failed specimens,the wider regions of brittle fracture belonged to exposed coated/uncoated ones. 展开更多
关键词 Rene®80 superalloy Pt-aluminide cyclic oxidation low cycle fatigue FRACTOGRAPHY
下载PDF
Cyclic deformation behaviors of Ti-46Al-2Cr-2Nb-0.15B alloy during thermo-mechanical fatigue tests
4
作者 项宏福 戴安伦 +2 位作者 王冀恒 李惠 杨锐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2174-2180,共7页
Thermo-mechanical fatigue tests were carried out on the gamma-TiAl alloy in the temperature range of 500-800℃ under mechanical strain control m order to evaluate its cyclic deformation behaviors at elevated temperatu... Thermo-mechanical fatigue tests were carried out on the gamma-TiAl alloy in the temperature range of 500-800℃ under mechanical strain control m order to evaluate its cyclic deformation behaviors at elevated temperature. Cyclic deformation curves, stress-strain hysteresis loops under different temperature--strain cycles were analyzed and dislocation configurations were also observed by TEM. The mechanisms of cyclic hardening or softening during thermo-mechanical fatigue (TMF) tests were also discussed. Results showed that thermo-mechanical fatigue lives largely depended on the applied mechanical strain amplitudes, applied types of strain and temperature. On the hysteresis loops appeared two apparent asymmetries: one was zero asymmetry and the other was tensile and compressive asymmetry. Dislocations configuration and slip behaviors were contributed to cyclic hardening or cyclic softening. 展开更多
关键词 titanium-aluminium alloy thermo-mechanical fatigue cyclic stress response hysteresis loop DISLOCATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部