A new temperature compensation technique for ring-oscillator-based ADCs is proposed. This technique employs a novelcfixed-number-based algorithm and CTAT current biasing technology to compensate the temperature-depend...A new temperature compensation technique for ring-oscillator-based ADCs is proposed. This technique employs a novelcfixed-number-based algorithm and CTAT current biasing technology to compensate the temperature-dependent variations of the output, thus eliminating the need for digital calibrations. Simulation results prove that, with the proposed technique,the resolution in the temperature range of 0 to 100℃ can reach a 2mV quantization bin size with an input voltage span of 120mV at the sampling frequency of fs = 100kHz.展开更多
文摘A new temperature compensation technique for ring-oscillator-based ADCs is proposed. This technique employs a novelcfixed-number-based algorithm and CTAT current biasing technology to compensate the temperature-dependent variations of the output, thus eliminating the need for digital calibrations. Simulation results prove that, with the proposed technique,the resolution in the temperature range of 0 to 100℃ can reach a 2mV quantization bin size with an input voltage span of 120mV at the sampling frequency of fs = 100kHz.