Using 3D Langevin dynamics simulations, we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure. The chain closure in spherical crowders is dominated by the increased medium visc...Using 3D Langevin dynamics simulations, we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure. The chain closure in spherical crowders is dominated by the increased medium viscosity so that it gets slower with the increasing volume fraction of crowders. By contrast, the dynamics of chain closure becomes very complicated with increasing volume fraction of crowders in spherocylindrical crowders. Notably, the mean closure time is found to have a dramatic decrease at a range of volume fraction of crowders 0.36-0.44. We then elucidate that an isotropic to nematic transition of spherocylindrical crowders at this range of volume fraction of crowders is responsible for the unexpected dramatic decrease in the mean closure time.展开更多
基金This work is supported by the Fundamental Research Funds for the Central Universities of China (No.WK2060200020) and the China Postdoctoral Science Foundation (No.2015M581998).
文摘Using 3D Langevin dynamics simulations, we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure. The chain closure in spherical crowders is dominated by the increased medium viscosity so that it gets slower with the increasing volume fraction of crowders. By contrast, the dynamics of chain closure becomes very complicated with increasing volume fraction of crowders in spherocylindrical crowders. Notably, the mean closure time is found to have a dramatic decrease at a range of volume fraction of crowders 0.36-0.44. We then elucidate that an isotropic to nematic transition of spherocylindrical crowders at this range of volume fraction of crowders is responsible for the unexpected dramatic decrease in the mean closure time.