A new thermally conductive thermoset composite has been developed. A hybrid organic-inorganic material composed of an epoxy resin crosslinked with a flexible diamine hardener, and a BN, was prepared by incorporating e...A new thermally conductive thermoset composite has been developed. A hybrid organic-inorganic material composed of an epoxy resin crosslinked with a flexible diamine hardener, and a BN, was prepared by incorporating epoxy structure units covalently into a BN via the sol-gel approach. The precursor was obtained by the reaction of DGEBA (diglycidyl ether of bisphenol A) with TEOS (tetraethyl orthosilicate). The precursor was then hydrolyzed and co-condensated with tetraethyl orthosilicate which is covalently bond with the hydroxyl groups on the BN surface at room temperature to yield epoxy-BN hybrid sol-gel material. FTIR spectroscopy confirmed the formation of organic and inorganic network. The thermal conductivity as measured by thermal conductive analyzer showed an increase up to 0.4048 W/m.K, for a mixture containing 0.4 wt% of BN fillers in the epoxy matrix. Moreover, the optimum conditions for surface modification of BN particle were also investigated.展开更多
文摘A new thermally conductive thermoset composite has been developed. A hybrid organic-inorganic material composed of an epoxy resin crosslinked with a flexible diamine hardener, and a BN, was prepared by incorporating epoxy structure units covalently into a BN via the sol-gel approach. The precursor was obtained by the reaction of DGEBA (diglycidyl ether of bisphenol A) with TEOS (tetraethyl orthosilicate). The precursor was then hydrolyzed and co-condensated with tetraethyl orthosilicate which is covalently bond with the hydroxyl groups on the BN surface at room temperature to yield epoxy-BN hybrid sol-gel material. FTIR spectroscopy confirmed the formation of organic and inorganic network. The thermal conductivity as measured by thermal conductive analyzer showed an increase up to 0.4048 W/m.K, for a mixture containing 0.4 wt% of BN fillers in the epoxy matrix. Moreover, the optimum conditions for surface modification of BN particle were also investigated.