An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) det...An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.展开更多
Visible light promoted difunctionalization of alkynes is reviewed. The difunctionalization reaction is achieved by different reagents. Radicals such as carbon(sp3), carbon(sp2), and other heteroatom(P, S, N, Se, O, an...Visible light promoted difunctionalization of alkynes is reviewed. The difunctionalization reaction is achieved by different reagents. Radicals such as carbon(sp3), carbon(sp2), and other heteroatom(P, S, N, Se, O, and halide) radicals initiated by visible light can undergo radical addition to a carbon-carbon triple bond. Upon further transformation, the desired difunctionalized products are obtained. Some organometallic complexes can be activated by visible light;the difunctionalization of alkynes is catalyzed by these species. Other reagents like 1,3-dipole precursors could also react with alkynes to give difunctionalization products;here, the 1,3-dipole derivatives are obtained by visible light photocatalysis. So far, the strategy has been succeeded in the formation of C–C bonds and C–X bonds. Several valuable chemical skeletons have been constructed under mild conditions. However, high regio-and stereoselectivities in some direct difunctionalization methodologies are yet to be achieved.展开更多
基金supported by the National Natural Science Foundation of China(21007033)the Fundamental Research Funds of Shandong University(2015JC017)~~
文摘An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LR19B020001)the National Natural Science Foundation of China(21472162,21772171)the National Basic Research Program of China(2015CB856600)~~
文摘Visible light promoted difunctionalization of alkynes is reviewed. The difunctionalization reaction is achieved by different reagents. Radicals such as carbon(sp3), carbon(sp2), and other heteroatom(P, S, N, Se, O, and halide) radicals initiated by visible light can undergo radical addition to a carbon-carbon triple bond. Upon further transformation, the desired difunctionalized products are obtained. Some organometallic complexes can be activated by visible light;the difunctionalization of alkynes is catalyzed by these species. Other reagents like 1,3-dipole precursors could also react with alkynes to give difunctionalization products;here, the 1,3-dipole derivatives are obtained by visible light photocatalysis. So far, the strategy has been succeeded in the formation of C–C bonds and C–X bonds. Several valuable chemical skeletons have been constructed under mild conditions. However, high regio-and stereoselectivities in some direct difunctionalization methodologies are yet to be achieved.