Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and con...Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and condensation reaction of Si(OC4H9)4. The crystallinity,morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry,scanning electron microscopy,atom force microscopy and alternating current impedance spectroscopy,respectively. Compared with the crystallinity of the unmodified SiO2 as inert filler,that of composite polymer electrolytes is decreased. The results show that silane-modified SiO2 particles are uniformly dispersed in (PEO)8LiClO4 composite polymer electrolyte film and the addition of silane-modified SiO2 increases the ionic conductivity of the (PEO)8LiClO4 more noticeably. When the mass fraction of SiO2 is about 10%,the conductivity of (PEO)8LiClO4-modified SiO2 attains a maximum value of 4.8×10-5 S·cm-1.展开更多
N, N'-bis (salicylidene) ethylenediiminocobalt (Cosalen) was encapsulated into microporous NaY zeolite via the technique of "ship-in-bottle". The encapsulated complex (Cosalen-NaY) was characterized by Fourie...N, N'-bis (salicylidene) ethylenediiminocobalt (Cosalen) was encapsulated into microporous NaY zeolite via the technique of "ship-in-bottle". The encapsulated complex (Cosalen-NaY) was characterized by Fourier-transform infrared spectrum, ultraviolet-visible spectrum, Brunaner-Emmett-Teller surface areas, X-ray diffraction, thermogravimetry-differential thermal analysis and scanning electron microscope. The reaction of cyclohexane oxidation using oxygen was chosen to investigate the catalytic performance of Cosalen-NaY, and the effects of oxygen pressure, temperature and reaction time were also studied. The results show that Cosalen complex is encapsulated into the supercage of the zeolite and the structure of NaY zeolite remains integrity and the thermal stability of Cosalen is greatly enhanced after encapsulation. Cosalen-NaY shows the better activity in the oxidation of cyclohexane without reductant and solvent. The conversion of cyclohexane is up to 13.4% at 150 ℃ for 3 h under oxygen pressure of 0.85 MPa, with the higher total selectivity to cyclohexanol, cyclohexanone, cyclohexyl hydroperoxide (CHHP) and acid (79.2%) than the neat complex (55.5%). NaY zeolite cartier maybe contributes to the results. There is no obvious induction period to initiate the reaction; furthermore, the amount of CHHP among the products is small, which indicates that the Cosalen-NaY has the strong ability to accelerate the decomposition of CHHP. Recycling tests show that the hybrid material can be used repeatedly with a negligible loss of active sites.展开更多
A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose w...A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose wastewater treatment. With the wastewater recycle ratio of 2.5 : 1, the recycled wastewater with biogas could mix sludge and wastewater in the JBILAFB reactor completely. The start-up of the JBILAFB reactor could be completed in less than 70 d through maintenance of hydraulic retention time (HR^I") and stepwise increase of feed total organic carbon (TOC) concentration. After the start-up, with the volumetric TOC loadings of 14.3 kg·m ^-3·d^-1, the TOC removal ratio, the effluent pH, and the volatile fatty acids (VFA)/alkalinity of the JBILAFB reactor were more than 80%, close to 7.0 and less than 0.4, respectively. Moreover, CH4 was produced at more than 70% of the theoretical value, The reactor exhibited high stability under the condition of high volumetric TOC loading. Sludge granules in the JBILAFB reactor were developed during the start-up and their sizes were enlarged with the stepwise increase of volumetric TOC loadings from 0.8 kg.m^-3.d ^-1 to 14.3 kg.m^-3.d^-1. Granules, an offwhite color and a similar spherical shape, were mainly comprised of global-like bacteria. These had good methanogenic activity and settleability, which were formed probably through adhesion of the bacteria. Some inorganic metal compounds such as Fe, Ca, Mg, Al, etc. were advantageous to the formation of the granules.展开更多
Three pillar-layered metal-organic frameworks(MOFs) based on M(HBTC)(4,4'-bipy).3DMF(M =Ni, Co, and Zn; HBTC = 1,3,5-benzenetricarboxylic acid, 4,4'-bipy = 4,4′-bipyridine) were synthesized using a solvothe...Three pillar-layered metal-organic frameworks(MOFs) based on M(HBTC)(4,4'-bipy).3DMF(M =Ni, Co, and Zn; HBTC = 1,3,5-benzenetricarboxylic acid, 4,4'-bipy = 4,4′-bipyridine) were synthesized using a solvothermal method. Zn(HBTC)(4,4'-bipy).3DMF was synthesized for the first time using both a solvothermal and microwave method, and subsequently characterized by various physicochemical methods. The structure of M(HBTC)(4,4'-bipy).3DMF consisted of honeycomb grid layers of M2+ ions and BTC units, which were further linked by the 4,4'-bipy pillars to form a three-dimensional highly porous framework. All the MOFs displayed excellent synergistic catalytic properties with alkyl ammonium halides(TBAX) in the solventless fixation of CO_2 with epoxides to produce cyclic carbonates. The catalytic activities of these MOFs followed the trend Zn Co Ni,which was explained by the acid-base bifunctional properties. The microwave-synthesized Zn(HBTC)(4,4'-bipy).3DMF material exhibited physical, chemical, and catalytic properties that were similar to those of the catalyst obtained using a conventional solvothermal synthesis. The scope of various parameters, including recyclability, was studied, and a plausible reaction mechanism was suggested.展开更多
Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium ch...Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium chloride (NaCl) solutions by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE). The cyclic voltammetric results demonstrated the cathodic process on Q235 carbon steel in O2-saturated 3.5% NaCl solution contains three reactions: dissolved oxygen reduction, iron oxides reduction and hydrogen evolution. The peak potential of oxygen reduction reaction (ORR) is - 0.85 V vs Ag/AgCl, 3 molL^-1 KCI. The EIS results indicated that the ORR occurring on Q235 carbon steel is a 4-electron process and that no finite diffusion is caused by the intermediate of H2O2 produced by ORR. The RDE and RRDE voltammograms confirmed the EIS results and it was found that the number of transferred electrons for ORR was nearly 4, i.e., dissolved oxygen reduced to water.展开更多
This study is for investigating the direct electro-deoxidation of mixed TiO2-Mn02 powder to prepare TiMn2 alloy in molten calcium chloride. The influences of process parameters, such as sintering temperature, cell vol...This study is for investigating the direct electro-deoxidation of mixed TiO2-Mn02 powder to prepare TiMn2 alloy in molten calcium chloride. The influences of process parameters, such as sintering temperature, cell voltage, and electrolysis time, on the electrolysis process were examined to investigate the mechanism of alloy formation. The composition and morphology of the products were analyzed by XRD and SEM, respectively. The electrochemical property of TiMn2 alloy was investigated by cyclic voltammetry measurements. The results show that pure TiMn2 can be prepared by direct electrochemical reduction of mixed TiO2/Mn02 pellets at a voltage of 3.1 V in molten calcium chloride of 900 ℃ for 7 h. The electro-deoxidation proceeds from the reduction of manganese oxides to Mn, which is reduced by Ti02 or CaTiOB to form TiMn2 alloy. The cyclic voltammetry measurements using pow- der microelectTode show that the prepared TiMn2 alloy has good electrochemical hydrogen storage property.展开更多
文摘Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and condensation reaction of Si(OC4H9)4. The crystallinity,morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry,scanning electron microscopy,atom force microscopy and alternating current impedance spectroscopy,respectively. Compared with the crystallinity of the unmodified SiO2 as inert filler,that of composite polymer electrolytes is decreased. The results show that silane-modified SiO2 particles are uniformly dispersed in (PEO)8LiClO4 composite polymer electrolyte film and the addition of silane-modified SiO2 increases the ionic conductivity of the (PEO)8LiClO4 more noticeably. When the mass fraction of SiO2 is about 10%,the conductivity of (PEO)8LiClO4-modified SiO2 attains a maximum value of 4.8×10-5 S·cm-1.
基金Project ( 04JJ3042 ) supported by the Hunan Provincial Natural Science Foundation of China
文摘N, N'-bis (salicylidene) ethylenediiminocobalt (Cosalen) was encapsulated into microporous NaY zeolite via the technique of "ship-in-bottle". The encapsulated complex (Cosalen-NaY) was characterized by Fourier-transform infrared spectrum, ultraviolet-visible spectrum, Brunaner-Emmett-Teller surface areas, X-ray diffraction, thermogravimetry-differential thermal analysis and scanning electron microscope. The reaction of cyclohexane oxidation using oxygen was chosen to investigate the catalytic performance of Cosalen-NaY, and the effects of oxygen pressure, temperature and reaction time were also studied. The results show that Cosalen complex is encapsulated into the supercage of the zeolite and the structure of NaY zeolite remains integrity and the thermal stability of Cosalen is greatly enhanced after encapsulation. Cosalen-NaY shows the better activity in the oxidation of cyclohexane without reductant and solvent. The conversion of cyclohexane is up to 13.4% at 150 ℃ for 3 h under oxygen pressure of 0.85 MPa, with the higher total selectivity to cyclohexanol, cyclohexanone, cyclohexyl hydroperoxide (CHHP) and acid (79.2%) than the neat complex (55.5%). NaY zeolite cartier maybe contributes to the results. There is no obvious induction period to initiate the reaction; furthermore, the amount of CHHP among the products is small, which indicates that the Cosalen-NaY has the strong ability to accelerate the decomposition of CHHP. Recycling tests show that the hybrid material can be used repeatedly with a negligible loss of active sites.
基金Supported by the National Natural Science Foundation of China (No.50278036), the Natural Science Foundation of Guangdong Province (No.04105951) and the National High Technology Research and Development Program of China (No.2006AA06Z378).
文摘A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose wastewater treatment. With the wastewater recycle ratio of 2.5 : 1, the recycled wastewater with biogas could mix sludge and wastewater in the JBILAFB reactor completely. The start-up of the JBILAFB reactor could be completed in less than 70 d through maintenance of hydraulic retention time (HR^I") and stepwise increase of feed total organic carbon (TOC) concentration. After the start-up, with the volumetric TOC loadings of 14.3 kg·m ^-3·d^-1, the TOC removal ratio, the effluent pH, and the volatile fatty acids (VFA)/alkalinity of the JBILAFB reactor were more than 80%, close to 7.0 and less than 0.4, respectively. Moreover, CH4 was produced at more than 70% of the theoretical value, The reactor exhibited high stability under the condition of high volumetric TOC loading. Sludge granules in the JBILAFB reactor were developed during the start-up and their sizes were enlarged with the stepwise increase of volumetric TOC loadings from 0.8 kg.m^-3.d ^-1 to 14.3 kg.m^-3.d^-1. Granules, an offwhite color and a similar spherical shape, were mainly comprised of global-like bacteria. These had good methanogenic activity and settleability, which were formed probably through adhesion of the bacteria. Some inorganic metal compounds such as Fe, Ca, Mg, Al, etc. were advantageous to the formation of the granules.
文摘Three pillar-layered metal-organic frameworks(MOFs) based on M(HBTC)(4,4'-bipy).3DMF(M =Ni, Co, and Zn; HBTC = 1,3,5-benzenetricarboxylic acid, 4,4'-bipy = 4,4′-bipyridine) were synthesized using a solvothermal method. Zn(HBTC)(4,4'-bipy).3DMF was synthesized for the first time using both a solvothermal and microwave method, and subsequently characterized by various physicochemical methods. The structure of M(HBTC)(4,4'-bipy).3DMF consisted of honeycomb grid layers of M2+ ions and BTC units, which were further linked by the 4,4'-bipy pillars to form a three-dimensional highly porous framework. All the MOFs displayed excellent synergistic catalytic properties with alkyl ammonium halides(TBAX) in the solventless fixation of CO_2 with epoxides to produce cyclic carbonates. The catalytic activities of these MOFs followed the trend Zn Co Ni,which was explained by the acid-base bifunctional properties. The microwave-synthesized Zn(HBTC)(4,4'-bipy).3DMF material exhibited physical, chemical, and catalytic properties that were similar to those of the catalyst obtained using a conventional solvothermal synthesis. The scope of various parameters, including recyclability, was studied, and a plausible reaction mechanism was suggested.
基金supported by the National Natural Science Foundation of China ( Grant No 40876041)Science and Technology Basic Research Program of Qingdao (Grant No 09-1-3-16-jch)the National Key Technology Research and Development Program of China (Grant No 2007 BAB27B01)
文摘Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium chloride (NaCl) solutions by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE). The cyclic voltammetric results demonstrated the cathodic process on Q235 carbon steel in O2-saturated 3.5% NaCl solution contains three reactions: dissolved oxygen reduction, iron oxides reduction and hydrogen evolution. The peak potential of oxygen reduction reaction (ORR) is - 0.85 V vs Ag/AgCl, 3 molL^-1 KCI. The EIS results indicated that the ORR occurring on Q235 carbon steel is a 4-electron process and that no finite diffusion is caused by the intermediate of H2O2 produced by ORR. The RDE and RRDE voltammograms confirmed the EIS results and it was found that the number of transferred electrons for ORR was nearly 4, i.e., dissolved oxygen reduced to water.
基金Supported by the National Natural Science Foundation of China(51201058)the Natural Science Foundation of Hebei Province(E2014209009)
文摘This study is for investigating the direct electro-deoxidation of mixed TiO2-Mn02 powder to prepare TiMn2 alloy in molten calcium chloride. The influences of process parameters, such as sintering temperature, cell voltage, and electrolysis time, on the electrolysis process were examined to investigate the mechanism of alloy formation. The composition and morphology of the products were analyzed by XRD and SEM, respectively. The electrochemical property of TiMn2 alloy was investigated by cyclic voltammetry measurements. The results show that pure TiMn2 can be prepared by direct electrochemical reduction of mixed TiO2/Mn02 pellets at a voltage of 3.1 V in molten calcium chloride of 900 ℃ for 7 h. The electro-deoxidation proceeds from the reduction of manganese oxides to Mn, which is reduced by Ti02 or CaTiOB to form TiMn2 alloy. The cyclic voltammetry measurements using pow- der microelectTode show that the prepared TiMn2 alloy has good electrochemical hydrogen storage property.