目的采用液相色谱-四级杆质谱法(LC-MS)建立罗库溴铵缩合物中环氧物的检测方法。方法色谱柱为AgilentEclipes XDB-C18(150 mm×2.1 mm,3μm),以甲醇-0.1%甲酸溶液为流动相进行梯度洗脱,流速:0.25 mL min 1,柱温:30℃,SIM离子采集方...目的采用液相色谱-四级杆质谱法(LC-MS)建立罗库溴铵缩合物中环氧物的检测方法。方法色谱柱为AgilentEclipes XDB-C18(150 mm×2.1 mm,3μm),以甲醇-0.1%甲酸溶液为流动相进行梯度洗脱,流速:0.25 mL min 1,柱温:30℃,SIM离子采集方式,采集离子分子量:347.2,APCI离子源,进样量:5μL。结果环氧物的定量限为0.000 3%,检测限为0.000 09%,柱温、流速的微小变化不影响检测结果,定量限浓度平均回收率为98.9%(n=3)。结论本方法灵敏高,准确度高,可用于罗库溴铵缩合物中环氧物限量检测。展开更多
The aim of "green chemistry" and "atom economy" is to utilize carbon dioxide and replace harmful reactants such as CO and phosgene for the production of cyclic carbonates. In this paper, metal-free catalysts inclu...The aim of "green chemistry" and "atom economy" is to utilize carbon dioxide and replace harmful reactants such as CO and phosgene for the production of cyclic carbonates. In this paper, metal-free catalysts including organic bases, ionic liquids, supported catalysts, organic copolymers and carbon materials for the synthesis of cyclic carbonates by the cycloaddition of carbon dioxide to epoxides are reviewed. Recent advances in the design of the catalysts and the understanding of the reaction mechanism are summarized and discussed. The synergistic effects of organic bases and hydrogen bond donors, organic bases and nucleophilic anions, hydrogen bond donors and nucleophilic anions and active components and supports are highlighted. The challenge is to develop metal-free catalysts suitable for carbon dioxide capture and fixation. The ultimate goal is to synthesize cyclic carbonates in a flow reactor directly using carbon dioxide from industrial flue gas at ambient temperature and atmospheric pressure. By using synergetic effects, a multi-functional approach can meet the design strategy of metal-free catalysts for carbon dioxide adsorption and activation as well as epoxide ring opening.展开更多
The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0....The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.展开更多
Using 1-butyl-3-methyl-imidazolium bromide (BM1MBr) as the supporting electrolyte and magne- sium as the sacrificial anode, a new and highly efficient electrochemically catalytic route was devel- oped for the synthe...Using 1-butyl-3-methyl-imidazolium bromide (BM1MBr) as the supporting electrolyte and magne- sium as the sacrificial anode, a new and highly efficient electrochemically catalytic route was devel- oped for the synthesis of cyclic carbonates from epoxides and CO2. Based on the cooperative action of BMIMBr and an electrogenerated magnesium salt obtained under a N2 atmosphere, CO2 reacted with a wide range of epoxides to readily generate cyclic carbonates in moderate to excellent yields under mild conditions.展开更多
New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH...New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.展开更多
To investigate the effects of environmental stresses on ascorbic acid content and its redox status, the effects of freezing and drought on ascorbate and dehydro-ascorbate content and activities of four enzymes involve...To investigate the effects of environmental stresses on ascorbic acid content and its redox status, the effects of freezing and drought on ascorbate and dehydro-ascorbate content and activities of four enzymes involved in the ascorbate-glutathione cycle in some conifers were studied. The results showed that both freezing and drought induced the decrease in ascorbate content and the increase in dehydro-ascorbate content. The activities of ascorbate peroxidase (APX) and monodehydro-ascorbate reductase (MDAR) were decreased by freezing stress. At the beginning of exposure to air, water loss from detached needles induced the increase in the activities of APX and MDAR. Further water loss turned to decrease the APX and MDAR activities. The activities of dehydro-ascorbate reductase (DHAR) and glutathione reductase (GR) were not sensitive to changes in temperature and water content of the needles. It is concluded that moderate temperature or water stresses may induce the acclimation and increase in the ability of the H2O2 scavenging system, while strong stresses decrease the ability and induce injury of plant tissues. Correlation between ascorbate content and activities of related enzymes and cold tolerance of conifers were also reported.展开更多
The generation of multifunctional isolated active sites in zeolite supports is an attractive method for integrating multistep sequential reactions into a single‐pass tandem catalytic reaction.In this study,bifunction...The generation of multifunctional isolated active sites in zeolite supports is an attractive method for integrating multistep sequential reactions into a single‐pass tandem catalytic reaction.In this study,bifunctional TiSn‐Beta zeolite was prepared by a simple and scalable post‐synthesis approach,and it was utilized as an efficient heterogeneous catalyst for the tandem conversion of alkenes to 1,2‐diols.The isolated Ti and Sn Lewis acid sites within the TiSn‐Beta zeolite can efficiently integrate alkene epoxidation and epoxide hydration in tandem in a zeolite microreactor to achieve one‐step conversion of alkenes to 1,2‐diols with a high selectivity of>90%.Zeolite confinement effects result in high tandem rates of alkene epoxidation and epoxide hydration as well as high selectivity toward the desired product.Further,the novel method demonstrated herein can be employed to other tandem catalytic reactions for sustainable chemical production.展开更多
文摘目的采用液相色谱-四级杆质谱法(LC-MS)建立罗库溴铵缩合物中环氧物的检测方法。方法色谱柱为AgilentEclipes XDB-C18(150 mm×2.1 mm,3μm),以甲醇-0.1%甲酸溶液为流动相进行梯度洗脱,流速:0.25 mL min 1,柱温:30℃,SIM离子采集方式,采集离子分子量:347.2,APCI离子源,进样量:5μL。结果环氧物的定量限为0.000 3%,检测限为0.000 09%,柱温、流速的微小变化不影响检测结果,定量限浓度平均回收率为98.9%(n=3)。结论本方法灵敏高,准确度高,可用于罗库溴铵缩合物中环氧物限量检测。
基金supported by the National Science and Technology Support Project of China(2013BAC11B03)the National Natural Science Foundation of China(21401054,21476065,21273067)the Graduate Student Scientific Research Innovation Fund Project of Hunan Province(CX2015B082)~~
文摘The aim of "green chemistry" and "atom economy" is to utilize carbon dioxide and replace harmful reactants such as CO and phosgene for the production of cyclic carbonates. In this paper, metal-free catalysts including organic bases, ionic liquids, supported catalysts, organic copolymers and carbon materials for the synthesis of cyclic carbonates by the cycloaddition of carbon dioxide to epoxides are reviewed. Recent advances in the design of the catalysts and the understanding of the reaction mechanism are summarized and discussed. The synergistic effects of organic bases and hydrogen bond donors, organic bases and nucleophilic anions, hydrogen bond donors and nucleophilic anions and active components and supports are highlighted. The challenge is to develop metal-free catalysts suitable for carbon dioxide capture and fixation. The ultimate goal is to synthesize cyclic carbonates in a flow reactor directly using carbon dioxide from industrial flue gas at ambient temperature and atmospheric pressure. By using synergetic effects, a multi-functional approach can meet the design strategy of metal-free catalysts for carbon dioxide adsorption and activation as well as epoxide ring opening.
基金supported by the National Natural Science Foundation of China(21173100 and 21320102001)~~
文摘The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.
基金supported by the National Natural Science Foundation of China(21303053)the Open Project of State Key Laboratory of Chemical Engineering(SKLChE-14C02)~~
文摘Using 1-butyl-3-methyl-imidazolium bromide (BM1MBr) as the supporting electrolyte and magne- sium as the sacrificial anode, a new and highly efficient electrochemically catalytic route was devel- oped for the synthesis of cyclic carbonates from epoxides and CO2. Based on the cooperative action of BMIMBr and an electrogenerated magnesium salt obtained under a N2 atmosphere, CO2 reacted with a wide range of epoxides to readily generate cyclic carbonates in moderate to excellent yields under mild conditions.
文摘New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.
文摘To investigate the effects of environmental stresses on ascorbic acid content and its redox status, the effects of freezing and drought on ascorbate and dehydro-ascorbate content and activities of four enzymes involved in the ascorbate-glutathione cycle in some conifers were studied. The results showed that both freezing and drought induced the decrease in ascorbate content and the increase in dehydro-ascorbate content. The activities of ascorbate peroxidase (APX) and monodehydro-ascorbate reductase (MDAR) were decreased by freezing stress. At the beginning of exposure to air, water loss from detached needles induced the increase in the activities of APX and MDAR. Further water loss turned to decrease the APX and MDAR activities. The activities of dehydro-ascorbate reductase (DHAR) and glutathione reductase (GR) were not sensitive to changes in temperature and water content of the needles. It is concluded that moderate temperature or water stresses may induce the acclimation and increase in the ability of the H2O2 scavenging system, while strong stresses decrease the ability and induce injury of plant tissues. Correlation between ascorbate content and activities of related enzymes and cold tolerance of conifers were also reported.
文摘The generation of multifunctional isolated active sites in zeolite supports is an attractive method for integrating multistep sequential reactions into a single‐pass tandem catalytic reaction.In this study,bifunctional TiSn‐Beta zeolite was prepared by a simple and scalable post‐synthesis approach,and it was utilized as an efficient heterogeneous catalyst for the tandem conversion of alkenes to 1,2‐diols.The isolated Ti and Sn Lewis acid sites within the TiSn‐Beta zeolite can efficiently integrate alkene epoxidation and epoxide hydration in tandem in a zeolite microreactor to achieve one‐step conversion of alkenes to 1,2‐diols with a high selectivity of>90%.Zeolite confinement effects result in high tandem rates of alkene epoxidation and epoxide hydration as well as high selectivity toward the desired product.Further,the novel method demonstrated herein can be employed to other tandem catalytic reactions for sustainable chemical production.