Non-point source pollution has become a hot issue on aquatic ecological environment at home and abroad. The research analyzed the challenges confronted by Xi River and proposed to construct agricultural ecological sou...Non-point source pollution has become a hot issue on aquatic ecological environment at home and abroad. The research analyzed the challenges confronted by Xi River and proposed to construct agricultural ecological source in middle and upper reaches of the Xi River from the perspectives of scientific layout, legal construction, routine monitoring, technology integration, and coordination system in order to promote sustainable development of eco-environment in Xi River.展开更多
Based on the relationship between water environment system and human society, water environment carrying capacity (WECC) probes into supporting ability of complex water environment system to the human society. Recen...Based on the relationship between water environment system and human society, water environment carrying capacity (WECC) probes into supporting ability of complex water environment system to the human society. Recent years, due to the shortage of water resources and serious water pollution in several watersheds in China, the research of watershed water environment carrying capacity (WWECC) becomes very important. The conception, connotation and method of representation of WWECC are discussed deeply in this paper. It shows that WWECC is a kind of index that instructs whether the water environment system in watershed can continue to support the development of social economy and ecology, it is dimensionless number.展开更多
During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China...During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China has mainly focused on the conflicts among economic growth,urban expansion and water resource shortages within admin-istrative boundaries.However,water environments are much more dependent on their physical boundaries than their administrative boundaries.Consistent with the nature of water environment,this study aims at analyzing coordination relationships between urban development and water environment changes within physical river basin boundaries.We chose the Shayinghe River Basin,China,as our case study area which is facing serious challenges related to water en-vironment protection.Then we classified 35 county-level administrative units into upstream,midstream and down-stream regions based on their physical characteristics;analyzed the coordination degree of urban agglomeration using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method;and constructed cooperative models using the Linear Programming (LP function) to simulate four scenarios of the coordination relationship be-tween urban population increase and water environment protection based on existing water resources and water pollu-tion data.The results show that the present coordinative situation in Shayinghe River Basin is not sustainable.In gen-eral,more than 50% administrative units are in the bad coordinative situation.In particular,the downstream region is under worse condition than the upstream and midstream regions.Cooperative models in scenario analyses indicate that the population scale set in existing urban master plannings is not coordinated with the water environment protection.To reach the goal of regional sustainable development,the total population needs to be controlled such that it will re-main at 4.5×10 7 or below by 2020 given the capacity of water environment.展开更多
River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help...River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.展开更多
Based on the observed data in monitored drainage areas and GIS spatial analysis tools,watershed basic database of Shitoukoumen Reservoir Basin was built.The multivariate analysis and redundancy analysis(RDA) were used...Based on the observed data in monitored drainage areas and GIS spatial analysis tools,watershed basic database of Shitoukoumen Reservoir Basin was built.The multivariate analysis and redundancy analysis(RDA) were used to analyze the spatial and temporal variations of water quality,identify the key environmental factors and their patterns influencing the spatial variation of water quality,and determine the main types and forms of the non-point source(NPS) pollutant export controlled by the key environmental factors.The results show that different patterns of environmental factors lead to great changes in water quality at spatial and seasonal scales.All selected environmental factors explain 64.5% and 68.2% of the spatial variation of water quality over dry season and rainy season,respectively,which shows clear seasonal difference.Over dry season,residential land is the most important environmental factor,which possesses 35.4% of the spatial variation,and drainage area is the second key environmental factor,which possesses 17.0% of spatial variation in the total variance.Over rainy season,slope length and drainage area are the key environmental factors,which possess 29.3% of the spatial variation together.Residential land influences nitrogen export by changing NH4+-N and particulate organic nitrogen(PON) discharge over dry season,and drainage area controls phosphorus export by regulating dissolved phosphorus(DP) drainage over dry season and phosphorus associated particulate(PAP) loss over rainy season,respectively.Although slope length is an important environmental factor,it does not influence NPS pollutant export.It is interesting that soil organic matter,as a minor environmental factor,highly determines phosphorus and nitrogen export by enhancing the DP,PAP and PON loss.展开更多
Phytoplankton and environmental variables were measured monthly from July 2009 to August 2011 in the Maixi River from the estuary to Baihua Reservoir in the Maotiao River catchment, southwestern China, to understand p...Phytoplankton and environmental variables were measured monthly from July 2009 to August 2011 in the Maixi River from the estuary to Baihua Reservoir in the Maotiao River catchment, southwestern China, to understand phytoplankton community structure and environmental factors. The relationship between phytoplankton community structure and environmental factors including hydrological, meteorological, physical, and chemical variables were explored using multivariate analysis. A total of 81 taxa of phytoplankton were identified, which were mainly composed of chlorophyta, bacillariophyta, and cyanobacteria. The phytoplankton community was dominated by Pseudanabaena limnetica during summer and fall and by Cyclotella meneghiniana during winter and spring. The abundance of phytoplankton ranged from 0.24~ 104 cells/L to 33.45x 106 cells/L, with the minimum occurring during February 2010 and the maximum during July 2009. The phytoplankton community was dominated mainly by cyanobacteria from April to September, and by bacillariophyta and pyrrophyta from October to March. Canonical correspondence analysis showed that temperature, pH values, and orthophosphate were the most important driving factors regulating the composition and dynamics of the phytoplankton community in the estuary. Cyanobacteria and euglenophyta abundance and biomass were affected mainly by temperature and pH values, while most chlorophyta and bacillariophyta were influenced by the concentrations of nutrients.展开更多
Assessment of temporal and spatial variations in surface water quality is important to evaluate the health of a watershed and make necessary management decisions to control current and future pollution of receiving wa...Assessment of temporal and spatial variations in surface water quality is important to evaluate the health of a watershed and make necessary management decisions to control current and future pollution of receiving water bodies. In this work, surface water quality data for 12 physical and chemical parameters collected from 10 sampling sites in the Nenjiang River basin during the years(2012-2013) were analyzed. The results show that river water quality has significant temporal and spatial variations. Hierarchical cluster analysis(HCA) grouped 12 months into three periods(LF, MF and HF) and classified 10 monitoring sites into three regions(LP, MP and HP) based on the similarity of water quality characteristics. The principle component analysis(PCA)/factor analysis(FA) was used to recognize the factors or origins responsible for temporal and spatial water quality variations. Temporal and spatial PCA/FA revealed that the Nenjiang River water chemistry was strongly affected by rock/water interaction, hydrologic processes and anthropogenic activities. This work demonstrates that the application of HCA and PCA/FA has achieved meaningful classification based on temporal and spatial criteria.展开更多
Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This p...Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This paper selected MIROC4h as a future projection of rainfall in the Sittaung River basin, Myanmar, with the fine spatial resolution of 0.5°. At first, MIROC4h projection towards 2035 was corrected by using the error trend (GSMaP-MIROC4h) for nine years over-rapping of both outputs from 2006 to 2014. Assuming the seasonal autoregressive processes, future error trend at each grid point was estimated by the time series forecast of SARMAP processes using the nine years training data. Then future projection correction was done by M1ROC4h output plus error trend at each grid point to obtain the corrected MIROC4h precipitation. As a historical analysis, using the corrected precipitation in the Sittaung River basin and observed river discharge at the outlet of the river, the hydrological model (HSPF (Hydrological Simulation Program Fortran)) calibration was carried out with consideration of the water utilization data for darn/reservoir and irrigation. As a projection analysis, future simulation of hourly discharge at the outlet of Sittaung River from 2015 to 2035 was conducted by using the corrected MIROC4h precipitation. The results of projection analysis show that high risks of flood will appear in 2023 and 2028 and the risks of draught will be expected in 2019-2021.展开更多
The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizer...The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizers and industrial wastewater. In this study, several factors were selected for evaluating and regionalizing the water environmental capacity by ArcG1S spatial analysis, including geomor- phologic characteristics, water quality goals, water body accessibility, water-dilution channels, and current water quality. Then, the spa- tial optimization of agriculture and industry was adjusted through overlay analysis, based on the balance between industrial space and water environmental capacity. The results show that the water environmental capacity gradually decreases from the west to the east, in contrast, the pollution caused by industrial and agricultural clustering is distributes along Taihu Lake, Gehu Lake and urban districts. The analysis of the agricultural space focuses on optimizing key protected areas of the Taihu Lake Basin, and the shores of Gehu Lake, optimally adjusting the second protected areas of the Taihu Lake Basin, and generally adjusting the urban areas of Changzhou and Wuxi cities. The analysis of industrial space focuses on optimizing the downtowns of Changzhou and Wuxi cities, optimally adjusting key protected areas and second protected areas of the Taihu Lake Basin, and generally adjusting the south and southwest of Gehu Lake. Lastly, some schemes of industrial and agricultural layouts and policies for the direction of industrial and agricultural development were proposed, reflecting a correlation between industry and agriculture and the water environment.展开更多
An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing trend in extreme floods and droughts apparently attributable to increased variability of ...An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing trend in extreme floods and droughts apparently attributable to increased variability of blue and green waters which could be due to climate change. In order to get a better understanding of the impacts of climate change on the water resources of the study area for near future as well as distant future, SWAT (soil and water assessment tool) model was applied. The model is first tested for its suitability in capturing the basin characteristics with available data, and then, forecasts from six GCMs (general circulation model) with about half-a-century lead time to 2046-2064 and about one-century lead time to 2080-2100 are incorporated to evaluate the impacts of climate change under three marker emission scenarios: A2, A1B and B 1. The results showed worsening water resources regime into the future.展开更多
The planning Yalong-River water transfer project will transfer 5.65 billion cubic meters water from the Yalong River into the Yellow River per year.The Yalong River will be dramatically impacted hydrologically and eco...The planning Yalong-River water transfer project will transfer 5.65 billion cubic meters water from the Yalong River into the Yellow River per year.The Yalong River will be dramatically impacted hydrologically and ecologically because more than 60% of the runoff will be diverted.An ecohydrological model was used to evaluate the impacts of the project on river corridor and wetland in this study.Schizothorax is a typical plateau river species and was used as the indicator species for assessment of the impact of water transfer project.The model simulated the habitat area of Schizothorax in the reach between the Reba Dam and the Ganzi Hydrology Station on the Yalong River.The Reba Dam,A'an Dam and Renda Dam will be constructed in the Yalong River for enhancing the water level for water diversion into the Yellow River.The velocity,channel width,runoff,and water depth will be reduced due to the water transfer,especially during flood season.The reduction in the velocity,channel width,runoff and water depth will occur mainly in the reach near the three dams and the reduction will be reduced to a minimum level in a distance about 100 km downstream of the dams.The maximum net water loss of Kasha Lake is only 1197200 m3,only 0.3% of runoff flowing into the lake.The project cannot bring adverse effect on the lake.The habitat area of Schizothorax in the Yalong River might be reduced if the water was transferred from the Reba Dam.The habitat area of this species will be reduced more than 40%.展开更多
基金Supported by Guangxi Agricultural Key Science & Technology Program(201528)Nanning Science Research and Technology Development Planning Program(20152054-13)+2 种基金Guangxi Science Research and Technology Development Planning Program(15104001-22)Guangxi Academy of Agricultural Sciences S&T Development Foundation(TF06)Xixiangtang District Science Research and Technology Development Planning Program(2015312)~~
文摘Non-point source pollution has become a hot issue on aquatic ecological environment at home and abroad. The research analyzed the challenges confronted by Xi River and proposed to construct agricultural ecological source in middle and upper reaches of the Xi River from the perspectives of scientific layout, legal construction, routine monitoring, technology integration, and coordination system in order to promote sustainable development of eco-environment in Xi River.
文摘Based on the relationship between water environment system and human society, water environment carrying capacity (WECC) probes into supporting ability of complex water environment system to the human society. Recent years, due to the shortage of water resources and serious water pollution in several watersheds in China, the research of watershed water environment carrying capacity (WWECC) becomes very important. The conception, connotation and method of representation of WWECC are discussed deeply in this paper. It shows that WWECC is a kind of index that instructs whether the water environment system in watershed can continue to support the development of social economy and ecology, it is dimensionless number.
基金Under the auspices of National Science and Technology Major Project (No.2009ZX07210)National Natural Science Foundation of China (No.40871261)
文摘During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China has mainly focused on the conflicts among economic growth,urban expansion and water resource shortages within admin-istrative boundaries.However,water environments are much more dependent on their physical boundaries than their administrative boundaries.Consistent with the nature of water environment,this study aims at analyzing coordination relationships between urban development and water environment changes within physical river basin boundaries.We chose the Shayinghe River Basin,China,as our case study area which is facing serious challenges related to water en-vironment protection.Then we classified 35 county-level administrative units into upstream,midstream and down-stream regions based on their physical characteristics;analyzed the coordination degree of urban agglomeration using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method;and constructed cooperative models using the Linear Programming (LP function) to simulate four scenarios of the coordination relationship be-tween urban population increase and water environment protection based on existing water resources and water pollu-tion data.The results show that the present coordinative situation in Shayinghe River Basin is not sustainable.In gen-eral,more than 50% administrative units are in the bad coordinative situation.In particular,the downstream region is under worse condition than the upstream and midstream regions.Cooperative models in scenario analyses indicate that the population scale set in existing urban master plannings is not coordinated with the water environment protection.To reach the goal of regional sustainable development,the total population needs to be controlled such that it will re-main at 4.5×10 7 or below by 2020 given the capacity of water environment.
基金Under the auspices of National Natural Science Foundation of China(No.41371538)Independent Project of State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.SKLURE2008-1-02)
文摘River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.
基金Under the auspices of Cooperation Program of Chinese Academy of Sciences and Jilin Province (No 2006SYHZ0025)Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-YW-126,KZCX2-YW-Q06-2)
文摘Based on the observed data in monitored drainage areas and GIS spatial analysis tools,watershed basic database of Shitoukoumen Reservoir Basin was built.The multivariate analysis and redundancy analysis(RDA) were used to analyze the spatial and temporal variations of water quality,identify the key environmental factors and their patterns influencing the spatial variation of water quality,and determine the main types and forms of the non-point source(NPS) pollutant export controlled by the key environmental factors.The results show that different patterns of environmental factors lead to great changes in water quality at spatial and seasonal scales.All selected environmental factors explain 64.5% and 68.2% of the spatial variation of water quality over dry season and rainy season,respectively,which shows clear seasonal difference.Over dry season,residential land is the most important environmental factor,which possesses 35.4% of the spatial variation,and drainage area is the second key environmental factor,which possesses 17.0% of spatial variation in the total variance.Over rainy season,slope length and drainage area are the key environmental factors,which possess 29.3% of the spatial variation together.Residential land influences nitrogen export by changing NH4+-N and particulate organic nitrogen(PON) discharge over dry season,and drainage area controls phosphorus export by regulating dissolved phosphorus(DP) drainage over dry season and phosphorus associated particulate(PAP) loss over rainy season,respectively.Although slope length is an important environmental factor,it does not influence NPS pollutant export.It is interesting that soil organic matter,as a minor environmental factor,highly determines phosphorus and nitrogen export by enhancing the DP,PAP and PON loss.
基金Supported by the National Natural Science Foundation of China(No.411063005)the National Basic Research Program of China(973 Program)(No.2012CB426506)the Science and Technology Committee of Guizhou Foundation(Nos.[2011]7028,[2012]7021)
文摘Phytoplankton and environmental variables were measured monthly from July 2009 to August 2011 in the Maixi River from the estuary to Baihua Reservoir in the Maotiao River catchment, southwestern China, to understand phytoplankton community structure and environmental factors. The relationship between phytoplankton community structure and environmental factors including hydrological, meteorological, physical, and chemical variables were explored using multivariate analysis. A total of 81 taxa of phytoplankton were identified, which were mainly composed of chlorophyta, bacillariophyta, and cyanobacteria. The phytoplankton community was dominated by Pseudanabaena limnetica during summer and fall and by Cyclotella meneghiniana during winter and spring. The abundance of phytoplankton ranged from 0.24~ 104 cells/L to 33.45x 106 cells/L, with the minimum occurring during February 2010 and the maximum during July 2009. The phytoplankton community was dominated mainly by cyanobacteria from April to September, and by bacillariophyta and pyrrophyta from October to March. Canonical correspondence analysis showed that temperature, pH values, and orthophosphate were the most important driving factors regulating the composition and dynamics of the phytoplankton community in the estuary. Cyanobacteria and euglenophyta abundance and biomass were affected mainly by temperature and pH values, while most chlorophyta and bacillariophyta were influenced by the concentrations of nutrients.
基金Project(2012ZX07501002-001)supported by Major Science and Technology Program for Water Pollution Control and Treatment of the Ministry of Science and Technology,China
文摘Assessment of temporal and spatial variations in surface water quality is important to evaluate the health of a watershed and make necessary management decisions to control current and future pollution of receiving water bodies. In this work, surface water quality data for 12 physical and chemical parameters collected from 10 sampling sites in the Nenjiang River basin during the years(2012-2013) were analyzed. The results show that river water quality has significant temporal and spatial variations. Hierarchical cluster analysis(HCA) grouped 12 months into three periods(LF, MF and HF) and classified 10 monitoring sites into three regions(LP, MP and HP) based on the similarity of water quality characteristics. The principle component analysis(PCA)/factor analysis(FA) was used to recognize the factors or origins responsible for temporal and spatial water quality variations. Temporal and spatial PCA/FA revealed that the Nenjiang River water chemistry was strongly affected by rock/water interaction, hydrologic processes and anthropogenic activities. This work demonstrates that the application of HCA and PCA/FA has achieved meaningful classification based on temporal and spatial criteria.
文摘Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This paper selected MIROC4h as a future projection of rainfall in the Sittaung River basin, Myanmar, with the fine spatial resolution of 0.5°. At first, MIROC4h projection towards 2035 was corrected by using the error trend (GSMaP-MIROC4h) for nine years over-rapping of both outputs from 2006 to 2014. Assuming the seasonal autoregressive processes, future error trend at each grid point was estimated by the time series forecast of SARMAP processes using the nine years training data. Then future projection correction was done by M1ROC4h output plus error trend at each grid point to obtain the corrected MIROC4h precipitation. As a historical analysis, using the corrected precipitation in the Sittaung River basin and observed river discharge at the outlet of the river, the hydrological model (HSPF (Hydrological Simulation Program Fortran)) calibration was carried out with consideration of the water utilization data for darn/reservoir and irrigation. As a projection analysis, future simulation of hourly discharge at the outlet of Sittaung River from 2015 to 2035 was conducted by using the corrected MIROC4h precipitation. The results of projection analysis show that high risks of flood will appear in 2023 and 2028 and the risks of draught will be expected in 2019-2021.
基金Under the auspices of National Natural Science Foundation of China (No. 41130750,70703033)'135' Strategic Development Planning Project of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences (No. 2012135006)
文摘The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizers and industrial wastewater. In this study, several factors were selected for evaluating and regionalizing the water environmental capacity by ArcG1S spatial analysis, including geomor- phologic characteristics, water quality goals, water body accessibility, water-dilution channels, and current water quality. Then, the spa- tial optimization of agriculture and industry was adjusted through overlay analysis, based on the balance between industrial space and water environmental capacity. The results show that the water environmental capacity gradually decreases from the west to the east, in contrast, the pollution caused by industrial and agricultural clustering is distributes along Taihu Lake, Gehu Lake and urban districts. The analysis of the agricultural space focuses on optimizing key protected areas of the Taihu Lake Basin, and the shores of Gehu Lake, optimally adjusting the second protected areas of the Taihu Lake Basin, and generally adjusting the urban areas of Changzhou and Wuxi cities. The analysis of industrial space focuses on optimizing the downtowns of Changzhou and Wuxi cities, optimally adjusting key protected areas and second protected areas of the Taihu Lake Basin, and generally adjusting the south and southwest of Gehu Lake. Lastly, some schemes of industrial and agricultural layouts and policies for the direction of industrial and agricultural development were proposed, reflecting a correlation between industry and agriculture and the water environment.
文摘An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing trend in extreme floods and droughts apparently attributable to increased variability of blue and green waters which could be due to climate change. In order to get a better understanding of the impacts of climate change on the water resources of the study area for near future as well as distant future, SWAT (soil and water assessment tool) model was applied. The model is first tested for its suitability in capturing the basin characteristics with available data, and then, forecasts from six GCMs (general circulation model) with about half-a-century lead time to 2046-2064 and about one-century lead time to 2080-2100 are incorporated to evaluate the impacts of climate change under three marker emission scenarios: A2, A1B and B 1. The results showed worsening water resources regime into the future.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51027006,51109224)the National Key Basic Research Program of China ("973" Program) (Grant No. 2010CB951102)the National Key Project of Scientific and Technical Supporting Program (Grant No. 2006BAB04A08)
文摘The planning Yalong-River water transfer project will transfer 5.65 billion cubic meters water from the Yalong River into the Yellow River per year.The Yalong River will be dramatically impacted hydrologically and ecologically because more than 60% of the runoff will be diverted.An ecohydrological model was used to evaluate the impacts of the project on river corridor and wetland in this study.Schizothorax is a typical plateau river species and was used as the indicator species for assessment of the impact of water transfer project.The model simulated the habitat area of Schizothorax in the reach between the Reba Dam and the Ganzi Hydrology Station on the Yalong River.The Reba Dam,A'an Dam and Renda Dam will be constructed in the Yalong River for enhancing the water level for water diversion into the Yellow River.The velocity,channel width,runoff,and water depth will be reduced due to the water transfer,especially during flood season.The reduction in the velocity,channel width,runoff and water depth will occur mainly in the reach near the three dams and the reduction will be reduced to a minimum level in a distance about 100 km downstream of the dams.The maximum net water loss of Kasha Lake is only 1197200 m3,only 0.3% of runoff flowing into the lake.The project cannot bring adverse effect on the lake.The habitat area of Schizothorax in the Yalong River might be reduced if the water was transferred from the Reba Dam.The habitat area of this species will be reduced more than 40%.