Miniaturization of electronic equipment has forced researchers to devise more effective methods for dissipating the generated heat in these devices.In this study,two methods,including porous media inserting and adding...Miniaturization of electronic equipment has forced researchers to devise more effective methods for dissipating the generated heat in these devices.In this study,two methods,including porous media inserting and adding nanoparticles to the base fluid,are used to improve heat transfer in an annulus heated on both walls.To study porous media insert,porous ribs are used on the outer and inner walls independently.The results show that when porous ribs are placed on the outer wall,although the heat transfer enhances,the pressure drop increment is so considerable that performance number (the ratio of heat transfer enhancement pressure increment,PN) is less than unity for all porous rib heights and porous media permeabilities that are studied.On the other hand,the PN of cases where porous ribs were placed on the inner wall depends on the Darcy number (Da).For example,for ribs with Da=0.1 and Da=0.0001,the maximum performance number,PN=4,occurs at the porous ribs height to hydraulic diameter ratios H/Dh=1 and H/Dh=0.25.Under these conditions,heat transfer is enhanced by two orders of magnitude.It is found that adding 5% nanoparticles to the base fluid in the two aforementioned cases improves the Nusselt number and PN by 10%–40%.展开更多
A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agen...A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different Si O2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 ℃ were investigated. The specimen with Si O2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 ℃.展开更多
Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008...Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008 from 3 meteorological stations in the south(Kaisaniemi),centre(Kajaani) and north(Sodankyl€a). Although precipitation days in northern part were more frequent than in central and southern parts, daily precipitation intensity in the south was generally higher than those in the centre and north of the country. Annual sum of very light precipitation(0 mm < daily precipitation long-term 50 th percentile of daily precipitation more than 0 mm) significantly( p < 0.05) decreased over time,with the highest rate in northern Finland. These decreasing trends might be the result of significant increases in frequency of days with very light precipitation at all the stations, with the highest and lowest rates in northern and southern Finland, respectively. Ratio of annual total precipitation to number of precipitation days also declined in Finland over 1908e2008, with a decreasing north to south gradient. However, annual duration indices of daily precipitation revealed no statistically significant trends at any station. Daily precipitation characteristics showed significant relationships with various well-known atmospheric circulation patterns(ACPs). In particular, the East Atlantic/West Russia(EA/WR)pattern in summer was the most influential ACP negatively associated with different daily precipitation intensity, frequency and duration indices at all three stations studied.展开更多
Six coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are em-ployed for examining the full evolution of the North Pacific mode water and Subtropical Countercurrent (STCC...Six coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are em-ployed for examining the full evolution of the North Pacific mode water and Subtropical Countercurrent (STCC) under global warming over 400 years following the Representative Concentration Pathways (RCP) 4.5. The mode water and STCC first show a sharp weakening trend when the radiative forcing increases, but then reverse to a slow strengthening trend of smaller magnitude after the radiative forcing is stablized. As the radiative forcing increases during the 21st century, the ocean warming is surface-intensified and decreases with depth, strengthening the upper ocean's stratification and becoming unfavorable for the mode water formation. Moving southward in the subtropical gyre, the shrinking mode water decelerates the STCC to the south. After the radiative forcing is stabilized in the 2070s, the subsequent warming is greater at the subsurface than at the sea surface, destabilizing the upper ocean and becoming favorable for the mode water formation. As a result, the mode water and STCC recover gradually after the radiative forc-ing is stabilized.展开更多
The thermal-environment characteristics of the existing forced-convection cooling system were compared with those of the convective cooling system, which combined the radiant-floor cooling system using floor-heating p...The thermal-environment characteristics of the existing forced-convection cooling system were compared with those of the convective cooling system, which combined the radiant-floor cooling system using floor-heating panel typically applied to apartments in South Korea with the forced-convection cooling system using improved fan coil unit. The subjective warm/cool-feeling responses to the combined radiant-floor and convective cooling system in the questionnaire survey conducted among the test subjects were analyzed to establish the basic data for the combined cooling system. The results show that in the thermal-equilibrium condition, the vertical air temperature difference in the model living room is larger in the forced-convection-cooling condition. Most of the subjects feel a proper warm/cool feeling on their entire body, but they feel colder on the foot and lower body in the combined-cooling condition.展开更多
The different spatial distributions of aerosol-induced direct radiative forcing and climatic effects in a weak (2003) and a strong (2006) East Asian summer monsoon (EASM) circulation were simulated using a high-...The different spatial distributions of aerosol-induced direct radiative forcing and climatic effects in a weak (2003) and a strong (2006) East Asian summer monsoon (EASM) circulation were simulated using a high-resolution regional climate model (RegCM3).Results showed that the atmospheric circulations of summer monsoon have direct relations with transport of aerosols and their climatic effects.Both the top-of-the-atmosphere (TOA) and the surface-negative radiative forcing of aerosols were stronger in weak EASM circulations.The main difference in aerosol-induced negative forcing in two summers varied between 2 and 14 W m-2 from the Sichuan Basin to North China,where a maximum in aerosol-induced negative forcing was also noticed in the EASM-dominated areas.The spatial difference in the simulated aerosol optical depth (AOD) in two summers generally showed the similar pictures.Surface cooling effects induced by aerosols were spatially more uniform in weak EASM circulations and cooler by about 1-4.5℃.A preliminary analysis here indicated that a weaker low-level wind speed not conducive to the transport and diffusion of aerosols could make more contributions to the differences in the two circulations.展开更多
This paper presents new beam test results for O^+ beam on a high current Integral Split Ring Radio Frequency Quadruple(ISR RFQ)accelerator.After the upgrading,a new designed 2.45GHz O^+ ECR Ion Source can provide a be...This paper presents new beam test results for O^+ beam on a high current Integral Split Ring Radio Frequency Quadruple(ISR RFQ)accelerator.After the upgrading,a new designed 2.45GHz O^+ ECR Ion Source can provide a beam with macro-puise peak current of 4mA at the injection point behind a 15ram diaphragm,whose O^+ factor is 60%—80% varied with gas flow rate and the normalized rms emittance is less than 0.15πmm·mrad.The accelerated O^+ beam current goes up to 2mA with the transmission of about 80% at 45kW RF power with duty factor 1/6(pulse duration of 1ms and repetition frequency of 166Hz).The upgraded RF power system includes low level RF pulse modulation amplifier,AGC,3W and 20W preamplifiers,1kW driver and 30kW final amplifier,which can output nearly 50kW in pulsed mode.The vacuum has been improved,too.The upgraded 1MeV ISR RFQ can be used as the beam injector of a new designed SFRFQ accelerating system,which is under the construction at Peking University.展开更多
The magnetic field of coaxial permanent magnet Halbach circuit is calculated first using the finite element method SUPERFISH and the approximate expression of the magnet circuit is obtained.The forces acting on IREB...The magnetic field of coaxial permanent magnet Halbach circuit is calculated first using the finite element method SUPERFISH and the approximate expression of the magnet circuit is obtained.The forces acting on IREB's electron in such magnetic field are analyzed by the use of fluid model and the radial force equation in modified Mathieu function form is drawn then.At last a 2.5-D particle in-cell(PIC)simulation code is used to investigate the physical process of the IREB's propagation.In the PIC simulation,the electron beam current,thickness,magnet field amplitude and the beam's initial incident angle related to the stable propagation are mainly discussed.The conclusion is made that several kilo-amperes intense annular electron beam could propagate stably,meanwhile the focusing form of such magnet geometry provides action mechanism for the interaction between beam electrons and microwave in the ubitron.展开更多
The association of seasonal timing of stratospheric final warming events(SFWs) in spring and the occurrence of major and minor stratospheric sudden warming events(SSWs) in midwinter were investigated through statistic...The association of seasonal timing of stratospheric final warming events(SFWs) in spring and the occurrence of major and minor stratospheric sudden warming events(SSWs) in midwinter were investigated through statistical analysis, parallel comparison, and composite analysis, based on the NCEP-NCAR reanalysis dataset covering 1958–2012. It was found that the intensity and occurrence of winter SSW events can largely affect the timing of spring SFWs. Specifically, the SFW onset dates tend to be later(earlier) after the occurrence(absence) of winter major SSWs. However, the occurrence or absence of minor SSWs does not change the frequency of early and late SFWs. A parallel comparison of the temporal evolution of the anomalous circulation and planetary-waves between major SSW and minor SSW winters indicates that the stratospheric polar vortex(polar jet) will keep being anomalously stronger 30 days after major SSW onset. And the associated significant negative Eliassen-Palm(EP) flux anomalies can persist for as long as 45 days after major SSW events. In contrast, the circulation anomalies around the occurrence of minor SSW events can last only a few days. To further verify the possible influence of the occurrence of major SSWs on the seasonal timing of SFWs, composite analysis was performed respectively for the 21 major-SSW years, 15 minor-SSW years, and the 15 non-SSW years. Generally, planetary-wave activity in the extratropical stratosphere tends to be stronger(weaker) and the westerly polar jet is anomalously weaker(stronger) in major-SSW(non-SSW) winters. But in the following spring, the planetary-wave activity is weaker(stronger) accompanied with an anomalously stronger(weaker) stratospheric polar vortex. In spring after minor-SSW years, however, the stratospheric polar vortex and the westerly polar jet exhibit a state close to climatology with relatively gentle variations.展开更多
The characteristics of the upper ocean response to tropical cyclone wind (TCW) forcing in the northwestern Pacific were in- vestigated using satellite and Argo data, as well as an ocean general circulation model. In...The characteristics of the upper ocean response to tropical cyclone wind (TCW) forcing in the northwestern Pacific were in- vestigated using satellite and Argo data, as well as an ocean general circulation model. In particular, a case study was carried out on typhoon Rammasun, which passed through our study area during May 6-13, 2008. It is found that the local response fight under the TCW forcing is characterized by a quick deepening of the surface mixed layer, a strong latent heat loss to the atmosphere, and an intense upwelling near the center of typhoon, leading to a cooling of the oceanic surface layer that persists as a cold wake along the typhoon track. More interestingly, the upper ocean response exhibits a four-layer thermal structure, including a cooling layer near the surface and a warming layer right below, accompanied by another pair of cooling/warming layers in the thermocline. The formation of the surface cooling/warming layers can be readily explained by the strong vertical mixing induced by TCW forcing, while the thermal response in the thermocline is probably a result of the cyclone-driven upwelling and the associated advective processes.展开更多
A novel circulation control technique is proposed to overcome the shortcomings of blowing jet circulation control, which uses the synthetic jet as the actuator and avoids the limitation about air supply requirement. T...A novel circulation control technique is proposed to overcome the shortcomings of blowing jet circulation control, which uses the synthetic jet as the actuator and avoids the limitation about air supply requirement. The effectiveness of synthetic jet circulation control to enhance lift of NCCR1510-7067N airfoil is confirmed by solving the 2-D unsteady Reynolds-averaged Na- vier-Stokes equations. The aerodynamic characteristics and the flow structure (especially close to the trailing edge) of NCCR 1510-7067N airfoil at zero angle of attack are also presented to discuss the mechanism of lift enhancement of the airfoil with synthetic jet circulation control. The results indicate that the synthetic jet can effectively delay the separation point on the airfoil trailing edge and increase the circulation and lift of the airfoil by Coanda effect. The numerical simulation results demonstrate that the lift augmentation efficiency with synthetic jet circulation control reaches △C1/Cμ,=114 in the present study, which is much higher than the value 12.1 in the case with steady blowing jet circulation control.展开更多
文摘Miniaturization of electronic equipment has forced researchers to devise more effective methods for dissipating the generated heat in these devices.In this study,two methods,including porous media inserting and adding nanoparticles to the base fluid,are used to improve heat transfer in an annulus heated on both walls.To study porous media insert,porous ribs are used on the outer and inner walls independently.The results show that when porous ribs are placed on the outer wall,although the heat transfer enhances,the pressure drop increment is so considerable that performance number (the ratio of heat transfer enhancement pressure increment,PN) is less than unity for all porous rib heights and porous media permeabilities that are studied.On the other hand,the PN of cases where porous ribs were placed on the inner wall depends on the Darcy number (Da).For example,for ribs with Da=0.1 and Da=0.0001,the maximum performance number,PN=4,occurs at the porous ribs height to hydraulic diameter ratios H/Dh=1 and H/Dh=0.25.Under these conditions,heat transfer is enhanced by two orders of magnitude.It is found that adding 5% nanoparticles to the base fluid in the two aforementioned cases improves the Nusselt number and PN by 10%–40%.
基金Project(20120023110011) supported by Doctoral Program of Higher Education of ChinaProjects(2009KH09,2009QH02) supported by the Fundamental Research Funds for the Central Universities of China
文摘A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different Si O2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 ℃ were investigated. The specimen with Si O2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 ℃.
基金the Finnish Cultural Foundation and Maa-ja vesitekniikan tuki r.y. (MVTT, 29188) for funding this researchsupported by Swedish VR, BECC and MERGE programs
文摘Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008 from 3 meteorological stations in the south(Kaisaniemi),centre(Kajaani) and north(Sodankyl€a). Although precipitation days in northern part were more frequent than in central and southern parts, daily precipitation intensity in the south was generally higher than those in the centre and north of the country. Annual sum of very light precipitation(0 mm < daily precipitation long-term 50 th percentile of daily precipitation more than 0 mm) significantly( p < 0.05) decreased over time,with the highest rate in northern Finland. These decreasing trends might be the result of significant increases in frequency of days with very light precipitation at all the stations, with the highest and lowest rates in northern and southern Finland, respectively. Ratio of annual total precipitation to number of precipitation days also declined in Finland over 1908e2008, with a decreasing north to south gradient. However, annual duration indices of daily precipitation revealed no statistically significant trends at any station. Daily precipitation characteristics showed significant relationships with various well-known atmospheric circulation patterns(ACPs). In particular, the East Atlantic/West Russia(EA/WR)pattern in summer was the most influential ACP negatively associated with different daily precipitation intensity, frequency and duration indices at all three stations studied.
基金supported by the National Basic Research Program of China(2012CB955602)National Key Program for Developing Basic Science(2010CB428904)Natural Science Foundation of China(41176006 and 40921004)
文摘Six coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are em-ployed for examining the full evolution of the North Pacific mode water and Subtropical Countercurrent (STCC) under global warming over 400 years following the Representative Concentration Pathways (RCP) 4.5. The mode water and STCC first show a sharp weakening trend when the radiative forcing increases, but then reverse to a slow strengthening trend of smaller magnitude after the radiative forcing is stablized. As the radiative forcing increases during the 21st century, the ocean warming is surface-intensified and decreases with depth, strengthening the upper ocean's stratification and becoming unfavorable for the mode water formation. Moving southward in the subtropical gyre, the shrinking mode water decelerates the STCC to the south. After the radiative forcing is stabilized in the 2070s, the subsequent warming is greater at the subsurface than at the sea surface, destabilizing the upper ocean and becoming favorable for the mode water formation. As a result, the mode water and STCC recover gradually after the radiative forc-ing is stabilized.
基金Project(NRF-2013RIA2A1A01014020)supported by the National Research Foundation of Korea
文摘The thermal-environment characteristics of the existing forced-convection cooling system were compared with those of the convective cooling system, which combined the radiant-floor cooling system using floor-heating panel typically applied to apartments in South Korea with the forced-convection cooling system using improved fan coil unit. The subjective warm/cool-feeling responses to the combined radiant-floor and convective cooling system in the questionnaire survey conducted among the test subjects were analyzed to establish the basic data for the combined cooling system. The results show that in the thermal-equilibrium condition, the vertical air temperature difference in the model living room is larger in the forced-convection-cooling condition. Most of the subjects feel a proper warm/cool feeling on their entire body, but they feel colder on the foot and lower body in the combined-cooling condition.
基金supported by the National Basic Research Program of China (2009CB421407)the Special Public Welfare Research Fund for Meteorological Profession of China Meteorological Administration (GYHY201006022)
文摘The different spatial distributions of aerosol-induced direct radiative forcing and climatic effects in a weak (2003) and a strong (2006) East Asian summer monsoon (EASM) circulation were simulated using a high-resolution regional climate model (RegCM3).Results showed that the atmospheric circulations of summer monsoon have direct relations with transport of aerosols and their climatic effects.Both the top-of-the-atmosphere (TOA) and the surface-negative radiative forcing of aerosols were stronger in weak EASM circulations.The main difference in aerosol-induced negative forcing in two summers varied between 2 and 14 W m-2 from the Sichuan Basin to North China,where a maximum in aerosol-induced negative forcing was also noticed in the EASM-dominated areas.The spatial difference in the simulated aerosol optical depth (AOD) in two summers generally showed the similar pictures.Surface cooling effects induced by aerosols were spatially more uniform in weak EASM circulations and cooler by about 1-4.5℃.A preliminary analysis here indicated that a weaker low-level wind speed not conducive to the transport and diffusion of aerosols could make more contributions to the differences in the two circulations.
文摘This paper presents new beam test results for O^+ beam on a high current Integral Split Ring Radio Frequency Quadruple(ISR RFQ)accelerator.After the upgrading,a new designed 2.45GHz O^+ ECR Ion Source can provide a beam with macro-puise peak current of 4mA at the injection point behind a 15ram diaphragm,whose O^+ factor is 60%—80% varied with gas flow rate and the normalized rms emittance is less than 0.15πmm·mrad.The accelerated O^+ beam current goes up to 2mA with the transmission of about 80% at 45kW RF power with duty factor 1/6(pulse duration of 1ms and repetition frequency of 166Hz).The upgraded RF power system includes low level RF pulse modulation amplifier,AGC,3W and 20W preamplifiers,1kW driver and 30kW final amplifier,which can output nearly 50kW in pulsed mode.The vacuum has been improved,too.The upgraded 1MeV ISR RFQ can be used as the beam injector of a new designed SFRFQ accelerating system,which is under the construction at Peking University.
文摘The magnetic field of coaxial permanent magnet Halbach circuit is calculated first using the finite element method SUPERFISH and the approximate expression of the magnet circuit is obtained.The forces acting on IREB's electron in such magnetic field are analyzed by the use of fluid model and the radial force equation in modified Mathieu function form is drawn then.At last a 2.5-D particle in-cell(PIC)simulation code is used to investigate the physical process of the IREB's propagation.In the PIC simulation,the electron beam current,thickness,magnet field amplitude and the beam's initial incident angle related to the stable propagation are mainly discussed.The conclusion is made that several kilo-amperes intense annular electron beam could propagate stably,meanwhile the focusing form of such magnet geometry provides action mechanism for the interaction between beam electrons and microwave in the ubitron.
基金supported by the National Basic Research Program of China(Grant No.2010CB428603)Advanced Talent Program of NUIST(Grant No.2014R010)
文摘The association of seasonal timing of stratospheric final warming events(SFWs) in spring and the occurrence of major and minor stratospheric sudden warming events(SSWs) in midwinter were investigated through statistical analysis, parallel comparison, and composite analysis, based on the NCEP-NCAR reanalysis dataset covering 1958–2012. It was found that the intensity and occurrence of winter SSW events can largely affect the timing of spring SFWs. Specifically, the SFW onset dates tend to be later(earlier) after the occurrence(absence) of winter major SSWs. However, the occurrence or absence of minor SSWs does not change the frequency of early and late SFWs. A parallel comparison of the temporal evolution of the anomalous circulation and planetary-waves between major SSW and minor SSW winters indicates that the stratospheric polar vortex(polar jet) will keep being anomalously stronger 30 days after major SSW onset. And the associated significant negative Eliassen-Palm(EP) flux anomalies can persist for as long as 45 days after major SSW events. In contrast, the circulation anomalies around the occurrence of minor SSW events can last only a few days. To further verify the possible influence of the occurrence of major SSWs on the seasonal timing of SFWs, composite analysis was performed respectively for the 21 major-SSW years, 15 minor-SSW years, and the 15 non-SSW years. Generally, planetary-wave activity in the extratropical stratosphere tends to be stronger(weaker) and the westerly polar jet is anomalously weaker(stronger) in major-SSW(non-SSW) winters. But in the following spring, the planetary-wave activity is weaker(stronger) accompanied with an anomalously stronger(weaker) stratospheric polar vortex. In spring after minor-SSW years, however, the stratospheric polar vortex and the westerly polar jet exhibit a state close to climatology with relatively gentle variations.
基金supported by the National Basic Research Pro-gram of China(Grant No.2013CB430302)the National Natural Science Foundation of China(Grant Nos.91128204,41321004,41475101,41421005)+1 种基金the China Scholarship Council,the CAS Strategic Priority Project(Grant Nos.XDA 11010301,XDA11010104)the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)
文摘The characteristics of the upper ocean response to tropical cyclone wind (TCW) forcing in the northwestern Pacific were in- vestigated using satellite and Argo data, as well as an ocean general circulation model. In particular, a case study was carried out on typhoon Rammasun, which passed through our study area during May 6-13, 2008. It is found that the local response fight under the TCW forcing is characterized by a quick deepening of the surface mixed layer, a strong latent heat loss to the atmosphere, and an intense upwelling near the center of typhoon, leading to a cooling of the oceanic surface layer that persists as a cold wake along the typhoon track. More interestingly, the upper ocean response exhibits a four-layer thermal structure, including a cooling layer near the surface and a warming layer right below, accompanied by another pair of cooling/warming layers in the thermocline. The formation of the surface cooling/warming layers can be readily explained by the strong vertical mixing induced by TCW forcing, while the thermal response in the thermocline is probably a result of the cyclone-driven upwelling and the associated advective processes.
基金supported by the National Natural Science Foundation of China (Grant No. 10872021)the Open Research Project of the State Key Laboratory of Mechanical System and Vibration (Grant No. MSV-2012-09)
文摘A novel circulation control technique is proposed to overcome the shortcomings of blowing jet circulation control, which uses the synthetic jet as the actuator and avoids the limitation about air supply requirement. The effectiveness of synthetic jet circulation control to enhance lift of NCCR1510-7067N airfoil is confirmed by solving the 2-D unsteady Reynolds-averaged Na- vier-Stokes equations. The aerodynamic characteristics and the flow structure (especially close to the trailing edge) of NCCR 1510-7067N airfoil at zero angle of attack are also presented to discuss the mechanism of lift enhancement of the airfoil with synthetic jet circulation control. The results indicate that the synthetic jet can effectively delay the separation point on the airfoil trailing edge and increase the circulation and lift of the airfoil by Coanda effect. The numerical simulation results demonstrate that the lift augmentation efficiency with synthetic jet circulation control reaches △C1/Cμ,=114 in the present study, which is much higher than the value 12.1 in the case with steady blowing jet circulation control.