A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI imple...A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI implemented with linear controllers like ramp comparison SP WM (RCSPWM) controllers. A novel operation scheme for DBI and a hysteresis curre nt controlled dual buck half bridge inverter (HCDBI) are proposed. The bias curr ent required by RCSPWM DBI is eliminated and conduction losses are dramatically reduced. HCDBI has greatly improved the modulation performance in DCM region for the benefit of its excellent command tracking capability. The operational schem e and control strategy are presented. Power losses of the conventional half brid ge inverter (CHBI) and HCDBI are compared with mathematical computation, and exp erimental verification is also executed. Both calculational and experimental res ults verify that HCDBI has a superior switching performance over CHBI. Its exce llent high frequency operational capacity provides another access to realize high fre quency operation of inverters.展开更多
The measurement theorem of fiber optically driven instrument for high-voltage line current is presented. The PLL voltage-frequency-narrow pulse principle and its micro-consumption mechanism are proposed, followed by a...The measurement theorem of fiber optically driven instrument for high-voltage line current is presented. The PLL voltage-frequency-narrow pulse principle and its micro-consumption mechanism are proposed, followed by analysis on the two main factors affecting PLL measurement precision. A software design scheme using 80C196KB micro-controller is introduced. The experiment result is satisfactory.展开更多
Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic comp...Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic components to operate in pressurized dielectric environment. The intended application is the converters for operation down to 3,000 meters ocean depth, primarily for subsea oil and gas processing. The paper focuses on the needed modifications to a general purpose gate driver for IGBT (insulated gate bipolar transistors) that will give pressure tolerance. Adaptations and modifications of the individual driver components are presented.The results from preliminary testing are promising, which shows that the considered adaptations give feasible solutions.展开更多
To understand the operation principle of the modular multilevel converter(MMC)deeply,it is necessary to study the harmonic characteristics of the MMC theoretically.Besides,the analytical harmonic formulas of the MMC a...To understand the operation principle of the modular multilevel converter(MMC)deeply,it is necessary to study the harmonic characteristics of the MMC theoretically.Besides,the analytical harmonic formulas of the MMC are useful in designing the main circuit,reducing the losses and improving the waveform quality.Based on the average switching function and the Fourier series harmonic analysis,this paper deduces the analytical expressions for such electrical quantities as the arm voltage,the arm current,the capacitor voltage,the capacitor current and the circulating current of the MMC.Finally,a digital model of a 21-level MMC-HVDC system is realized in PSCAD/EMTDC.The results of the analytical expressions coincide with the simulation results,which verify the effectiveness and feasibility of the proposed analytical expressions.展开更多
Ion mobility analysis is a well-known analytical technique for identifying gas-phase compounds in fastresponse gas-monitoring systems.However,the conventional plasma discharge system is bulky,operates at a high temper...Ion mobility analysis is a well-known analytical technique for identifying gas-phase compounds in fastresponse gas-monitoring systems.However,the conventional plasma discharge system is bulky,operates at a high temperature,and inappropriate for volatile organic compounds(VOCs)concentration detection.Therefore,we report a machine learning(ML)-enhanced ion mobility analyzer with a triboelectric-based ionizer,which offers good ion mobility selectivity and VOC recognition ability with a small-sized device and non-strict operating environment.Based on the charge accumulation mechanism,a multi-switched manipulation triboelectric nanogenerator(SM-TENG)can provide a direct current(DC)bias at the order of a few hundred,which can be further leveraged as the power source to obtain a unique and repeatable discharge characteristic of different VOCs,and their mixtures,with a special tip-plate electrode configuration.Aiming to tackle the grand challenge in the detection of multiple VOCs,the ML-enhanced ion mobility analysis method was successfully demonstrated by extracting specific features automatically from ion mobility spectrometry data with ML algorithms,which significantly enhance the detection ability of the SM-TENG based VOC analyzer,showing a portable real-time VOC monitoring solution with rapid response and low power consumption for future internet of things based environmental monitoring applications.展开更多
文摘A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI implemented with linear controllers like ramp comparison SP WM (RCSPWM) controllers. A novel operation scheme for DBI and a hysteresis curre nt controlled dual buck half bridge inverter (HCDBI) are proposed. The bias curr ent required by RCSPWM DBI is eliminated and conduction losses are dramatically reduced. HCDBI has greatly improved the modulation performance in DCM region for the benefit of its excellent command tracking capability. The operational schem e and control strategy are presented. Power losses of the conventional half brid ge inverter (CHBI) and HCDBI are compared with mathematical computation, and exp erimental verification is also executed. Both calculational and experimental res ults verify that HCDBI has a superior switching performance over CHBI. Its exce llent high frequency operational capacity provides another access to realize high fre quency operation of inverters.
基金NationalNaturalScienceFoundationofChina (No .6 974 80 0 1) KeySubjectSpecialFoundationofMechanicalBureau
文摘The measurement theorem of fiber optically driven instrument for high-voltage line current is presented. The PLL voltage-frequency-narrow pulse principle and its micro-consumption mechanism are proposed, followed by analysis on the two main factors affecting PLL measurement precision. A software design scheme using 80C196KB micro-controller is introduced. The experiment result is satisfactory.
文摘Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic components to operate in pressurized dielectric environment. The intended application is the converters for operation down to 3,000 meters ocean depth, primarily for subsea oil and gas processing. The paper focuses on the needed modifications to a general purpose gate driver for IGBT (insulated gate bipolar transistors) that will give pressure tolerance. Adaptations and modifications of the individual driver components are presented.The results from preliminary testing are promising, which shows that the considered adaptations give feasible solutions.
基金supported by the National High Technology Research and Development Program of China("863" Project)(Grant No.2012AA050205)
文摘To understand the operation principle of the modular multilevel converter(MMC)deeply,it is necessary to study the harmonic characteristics of the MMC theoretically.Besides,the analytical harmonic formulas of the MMC are useful in designing the main circuit,reducing the losses and improving the waveform quality.Based on the average switching function and the Fourier series harmonic analysis,this paper deduces the analytical expressions for such electrical quantities as the arm voltage,the arm current,the capacitor voltage,the capacitor current and the circulating current of the MMC.Finally,a digital model of a 21-level MMC-HVDC system is realized in PSCAD/EMTDC.The results of the analytical expressions coincide with the simulation results,which verify the effectiveness and feasibility of the proposed analytical expressions.
基金supported by the research grant of‘‘Chip-Scale MEMS Micro-Spectrometer for Monitoring Harsh Industrial Gases”(R-263-000-C91-305)at the National University of Singapore(NUS),Singaporethe research grant of RIE Advanced Manufacturing and Engineering(AME)programmatic grant A18A4b0055‘‘Nanosystems at the Edge”at NUS,Singapore。
文摘Ion mobility analysis is a well-known analytical technique for identifying gas-phase compounds in fastresponse gas-monitoring systems.However,the conventional plasma discharge system is bulky,operates at a high temperature,and inappropriate for volatile organic compounds(VOCs)concentration detection.Therefore,we report a machine learning(ML)-enhanced ion mobility analyzer with a triboelectric-based ionizer,which offers good ion mobility selectivity and VOC recognition ability with a small-sized device and non-strict operating environment.Based on the charge accumulation mechanism,a multi-switched manipulation triboelectric nanogenerator(SM-TENG)can provide a direct current(DC)bias at the order of a few hundred,which can be further leveraged as the power source to obtain a unique and repeatable discharge characteristic of different VOCs,and their mixtures,with a special tip-plate electrode configuration.Aiming to tackle the grand challenge in the detection of multiple VOCs,the ML-enhanced ion mobility analysis method was successfully demonstrated by extracting specific features automatically from ion mobility spectrometry data with ML algorithms,which significantly enhance the detection ability of the SM-TENG based VOC analyzer,showing a portable real-time VOC monitoring solution with rapid response and low power consumption for future internet of things based environmental monitoring applications.