Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the environmental quality of four soils around a ferroalloy plant in Nanjing City. Environmental quality...Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the environmental quality of four soils around a ferroalloy plant in Nanjing City. Environmental quality was assessed as class Ⅳ (moderately polluted) for each soil with single-factor index method, and was identified to be classes Ⅳ, Ⅲ (slightly polluted), Ⅲ, and Ⅲ for soils A, B, C, and D, respectively, with the comprehensive index model. In comparison with the single-factor index method, the comprehensive index model concerned both dominant parameter and average contribution of all factors to the integrated environmental quality. Using the two fuzzy mathematical methods (single-factor deciding and weighted average models), the environmental risks were determined to be classes Ⅳ, Ⅲ, Ⅱ (clean), and Ⅱ for soils A, B, C, and D, respectively. However, divergence of the membership degree to each pollution class still occurred between the two methods. In fuzzy mathematical methods, membership functions were used to describe the limits between different pollution degrees, and different weights were allocated for the factors according to pollution contribution. Introduction of membership degree and weight of each factor to fuzzy mathematical models made the methods more reasonable in the field of environmental risk assessment.展开更多
Based on time series and linear trend analysis, the authors evaluated the performance of the fourth gen- eration atmospheric general circulation model developed at the Institute of Atmospheric Physics, Chinese Academy...Based on time series and linear trend analysis, the authors evaluated the performance of the fourth gen- eration atmospheric general circulation model developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP AGCM4.0), in simulating surface air temperature (SAT) during the twentieth century over China and the globe. The numerical experiment is con- ducted by driving the model with the observed sea surface temperature and sea ice. It is shown that IAP AGCM4.0 can simulate the warming trend of the global SAT, with the major wanning regions in the high latitudes of the Northern Hemisphere and the mid-latitudes of the South- ern Hemisphere. While the simulated trend over the whole globe is close to the observation, the model trader- estimates the observed trend over the continents. More- over, the model simulates the spatial distribution of SAT in China, with a bias of approximately -2℃ in eastern China, but with a more serious bias in western China. Compared with the global mean, however, the correlation coefficient between the simulation and observation in China is significantly lower, indicating that there is large uncertainty in simulating regional climate change.展开更多
The East Asian monsoon has a tremendous impact on agricultural production in China. An assessment of the risk of drought disaster in maize-producing regions is therefore important in ensuring a reduction in such disas...The East Asian monsoon has a tremendous impact on agricultural production in China. An assessment of the risk of drought disaster in maize-producing regions is therefore important in ensuring a reduction in such disasters and an increase in food security. A risk assessment model, EPIC(Environmental Policy Integrated Climate) model, for maize drought disasters based on the Erosion Productivity Impact Calculator crop model is proposed for areas with the topographic characteristics of the mountainous karst region in southwest China. This region has one of the highest levels of environmental degradation in China. The results showed that the hazard risk level for the maize zone of southwest China is generally high. Most hazard index values were between 0.4 and 0.5,accounting for 47.32% of total study area. However,the risk level for drought loss was low. Most of the loss rate was <0.1, accounting for 96.24% of the total study area. The three high-risk areas were mainlydistributed in the parallel ridge–valley areas in the east of Sichuan Province, the West Mountain area of Guizhou Province, and the south of Yunnan Province.These results provide a scientific basis and support for the reduction of agricultural drought disasters and an increase in food security in the southwest China maize zone.展开更多
Personal conditioning system(PCS)is receiving considerable attention due to its energy-saving potential and the ability to satisfy individual comfort requirements.As a part of PCS,personal heating systems can maintain...Personal conditioning system(PCS)is receiving considerable attention due to its energy-saving potential and the ability to satisfy individual comfort requirements.As a part of PCS,personal heating systems can maintain human thermal comfort in cold environments,which leads to their potential role of important heating mode in cold winter,especially in the Hot Summer and Cold Winter regions of China.In order to better promote the development and application of personal heating systems,this paper reviews the published studies.Personal heating systems can be divided into four types based on the mode of heat transfer:conductive,convective,radiative and combinative type.Characteristics of each category and respective devices are introduced.Furthermore,identifying the effects of personal heating on thermal comfort and the models for predicting or evaluating thermal comfort during local heating.This paper would provide users with a guideline for choosing suitable heating equipment during winter.展开更多
Mathematical model is developed for prediction of physiological changes in man during work in hot environment taking into consideration intensity of work, clothing and environment. To evaluate human functional state t...Mathematical model is developed for prediction of physiological changes in man during work in hot environment taking into consideration intensity of work, clothing and environment. To evaluate human functional state the heat stress index was calculated. Modeling researches made the conclusion that the main risk factor during work in hot environment is water losses that happens through thermoregulatory sweat evaporation. Modeling showed that in humid environment man wearing protective clothing has short time to work as water losses became more than 2% of human weight that means body dehydration. Preliminary model prediction can be used as preventive method to avoid hazard of human health.展开更多
This study is aimed to investigate and analyze the ecological technology around ecological environment resources of engineering in Taiwan. In Taiwan, the natural and artificial material applied in the ecological techn...This study is aimed to investigate and analyze the ecological technology around ecological environment resources of engineering in Taiwan. In Taiwan, the natural and artificial material applied in the ecological technology in internal currently, usually lack of evaluation for applicative conditions. Hence, this study carried on the whole research and identifications to draft the eco-materials of ecological technology. The evaluation models of applied materials for ecological technology were proposed. The quantitative score were obtained by expert's person evaluation. Three models were proposed to quantify the effects of applied materials on the ecological environment. The statistical procedures were adopted to compare the performance of these materials for ecological technology. The results indicated that the comparison of applied materials can be treated by quantitative analysis. For the further analysis, more evaluated data from expert's experience need to be collected then the bias of person subject can be reduced. In addition to reach the benefits in the respects of ecosystem, society, economy and function, also practice the comprehensive effects in ecological technology.展开更多
Based on the finite-volume coastal ocean model (FVCOM), a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen (BCM). The domain decomposi...Based on the finite-volume coastal ocean model (FVCOM), a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen (BCM). The domain decomposition method, which is effective in describing the conservation of volume and non-conservation of mechanical energy in the utilization of tidal energy, was employed to estimate the theoretical tidal energy resources and developable energy resources, and to analyze the hydrodynamic effect of the tidal power station. This innovative approach has the advantage of linking physical oceanography with engineering problems. The results indicate that the theoretical annual tidal energy resources is about 2x 108 kwh under the influence of tidal power station; Optimized power installation is confirmed according to power generation curve from numerical analysis; the developable resources is about 38.2% of theoretical tidal energy resources with the employment of one-way electricity generation. The electricity generation time and power are 3479 hours and 2.55~104KW, respectively. The power station has no effect on the tide pattern which is semi-diumal tide in both two conditions, but the amplitudes of main constituents apparently decrease in the area near the dam, with the ME decreasing the most, about 62.92 cm. The tidal prism shrinks to 2.28×107 m3, but can still meet the flow requirement for tidal power generation. The existence of station increases the flow rate along the waterway and enhances the residual current. There are two opposite vortexes formed on the east side beside the dam of the station, which leads to pollutants gathering.展开更多
The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with c...The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with cycle number follows a traction function path. Two cycle life predicting models were established. The possible cycle life was extrapolated, which follows normal distribution well. The distribution parameters were estimated and the battery reliability was evaluated. The models' precision was validated and the effect of the cycle number on the predicting precision was analysed. The cycle life models and reliability evaluation method resolved the difficulty of battery life appraisal, such as long period and high cost.展开更多
In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material caus...In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material causes iustable yarn formation, the investigation focuses on the fault characteristic existing in the dynamic tension. Analyzing the dynamic spinning system, the phenomenon of over random shock in a spinning triangle is discovered to be the main physical event prior to yarn end breakage. The fault characteristic is further confirmed by dynamic tests and signal processing, and can be used to make an approach to predicting yarn end breakage. A relative energy feature is defined for evaluating the tendency of yarn end breakage, and its effectiveness is verified by on.line monitoring tests in the laboratory. The research results show that the proposed dynamic fault model has not only an advantage in indicating the presence of fault characteristics, but also great potentials in quantitating fault in online spinning monitoring.展开更多
China has a large potential to reduce CO2 emission in the Asian region. In this study, life cycle analyses of energy supply technologies in China were evaluated for enforcing the clean development mechanism (CDM). W...China has a large potential to reduce CO2 emission in the Asian region. In this study, life cycle analyses of energy supply technologies in China were evaluated for enforcing the clean development mechanism (CDM). Wind power, integrated coal gasification combined cycle (IGCC), natural gas combined cycle (NGCC), and ultra super critical power plant (USC) were chosen as new power generation technologies. The system function of the developed model was enhanced to extend coverage to new technologies for power generation systems in China. CO2 intensities, energy profit ratios, and CO2 emission reductions are estimated based on the assumption that these power plants were constructed at Shanxi, Xinjiang, and Shanghai. Wind power showed the best results with regard to CO2 intensity and energy profit ratio. However, it also has some disadvantages with regard to the utilization factor and the lifetime. It is considered that wind power will become an important part of CDM activities as the utilization factor and the lifetime improve. An NGCC using a natural gas pipeline was found to be most advantageous in reducing CO2 emission. IGCC and USC were inferior to NGCC with regard to energy profit ratios and CO2 emission reductions.展开更多
This paper examined the method to evaluate structural complexity of circular economy system's industrial chain, which applied entropy information and hierarchical metrics to produce complexity degrees according to th...This paper examined the method to evaluate structural complexity of circular economy system's industrial chain, which applied entropy information and hierarchical metrics to produce complexity degrees according to the theory of complex system. We developed an evaluation model to make a general metrics for circular economy system of industrial chains. The development of the evaluation tree drew upon five factors to identify the structural complexity. The evaluation model generated unitive entropy information from six data definition (node, level of community, metabolic span, degree of node, number of relation and connectivity of node) according to the evaluation tree. The industrial chains of Tashan circular economy park of Datong Coal Mine Group and Gujiao circular economy park of Xishan Coal-Electricity Group were evaluated by the proposed method. The key factors stunted by the decline of structural complexity were identified and the unitive metrics of entropy information of the industrial chain was shown for realigning the circular economy systems.展开更多
Based on the fuzzy characters of eco-environmental quality conception and classification standards, the incompatibility of evaluation indexes, the statistical fluctuation of index values, an information entropy fuzzy ...Based on the fuzzy characters of eco-environmental quality conception and classification standards, the incompatibility of evaluation indexes, the statistical fluctuation of index values, an information entropy fuzzy matter-element model for evaluating regional eco-environmental quality is proposed by way of comprehensively utilizing such theories as information theory, fuzzy sets and matter-element theory, etc. As a case, the model established here is used to evaluate the eco-environmental quality of Lake Chaohu basin. In the case, the eco-environmental quality standards and the evaluated schemes are indicated as matter-elements, together. Through constructing compound fuzzy matter-element, probability compound fuzzy matter-element and self-information compound fuzzy matter- element, the information entropy of each matter-element (including evaluated schemes and classification standards) is calculated in the end. According to these obtained information entropy values, the evaluated schemes can be not only arranged in quality state order but also classified by classification standards .Study result shows that information entropy fuzzy matter-element model is suitable for regional eco-environmental quality assessment.展开更多
The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate predictio...The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate prediction of chemical poisoning of honey bees is a challenging task owing to a lack of understanding of chemical toxicity and introspection. Deep learning(DL) shows potential utility for general and highly variable tasks across fields. Here, we developed a new DL model of deep graph attention convolutional neural networks(GACNN) with the combination of undirected graph(UG) and attention convolutional neural networks(ACNN) to accurately classify chemical poisoning of honey bees. We used a training dataset of 720 pesticides and an external validation dataset of 90 pesticides, which is one order of magnitude larger than the previous datasets. We tested its performance in two ways: poisonous versus nonpoisonous and GACNN versus other frequently-used machine learning models. The first case represents the accuracy in identifying bee poisonous chemicals. The second represents performance advantages. The GACNN achieved ~6% higher performance for predicting toxic samples and more stable with ~7%Matthews Correlation Coefficient(MCC) higher compared to all tested models, demonstrating GACNN is capable of accurately classifying chemicals and has considerable potential in practical applications.In addition, we also summarized and evaluated the mechanisms underlying the response of honey bees to chemical exposure based on the mapping of molecular similarity. Moreover, our cloud platform(http://beetox.cn) of this model provides low-cost universal access to information, which could vitally enhance environmental risk assessment.展开更多
Asia is experiencing a more rapid economic growth compared to any other regions. The contamination of soil and groundwater with metals can mainly be attributed to human activities; therefore, risk assessments to chara...Asia is experiencing a more rapid economic growth compared to any other regions. The contamination of soil and groundwater with metals can mainly be attributed to human activities; therefore, risk assessments to characterize the nature and magnitude of risks to humans and ecological receptors from contaminants are important. Risk assessments are often iterative processes, which involve identification and filling data gap. Experimental samplings, geostatistical and multivariate statistical methods as well as multimedia risk assessment modeling are the three major methodologies used in the assessment of metal contamination in soil and groundwater.This review highlights a number of measurements for improving risk calculation methods and expounds scientific approaches that involve the identification of the major source of contamination, exposure pathways and bioavailability of metals. In general, risk assessments of metals in soil and groundwater worldwide are mainly focused on the levels of contamination, identification of exposure pathways, and prediction of the probability of contamination. To date, very limited studies have reported the development of relevant environmental laws and policies in the regulation of soil and groundwater contamination in Asia. The development, variations and limitations in the regulations of soil and groundwater contamination among developed countries may provide helpful guidance for the developing countries in Asia.展开更多
基金the PhD Fund of the National Education Ministry of China (No20030284038)the Interna-tional Foundation for Science (NoW/4215)
文摘Four assessment methods (two pollution indexes and two fuzzy mathematical models) were employed to investigate the environmental quality of four soils around a ferroalloy plant in Nanjing City. Environmental quality was assessed as class Ⅳ (moderately polluted) for each soil with single-factor index method, and was identified to be classes Ⅳ, Ⅲ (slightly polluted), Ⅲ, and Ⅲ for soils A, B, C, and D, respectively, with the comprehensive index model. In comparison with the single-factor index method, the comprehensive index model concerned both dominant parameter and average contribution of all factors to the integrated environmental quality. Using the two fuzzy mathematical methods (single-factor deciding and weighted average models), the environmental risks were determined to be classes Ⅳ, Ⅲ, Ⅱ (clean), and Ⅱ for soils A, B, C, and D, respectively. However, divergence of the membership degree to each pollution class still occurred between the two methods. In fuzzy mathematical methods, membership functions were used to describe the limits between different pollution degrees, and different weights were allocated for the factors according to pollution contribution. Introduction of membership degree and weight of each factor to fuzzy mathematical models made the methods more reasonable in the field of environmental risk assessment.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues of the Chinese Academy of Sciences (Grant No. XDA05110201)the Development and Validation of High Resolution Climate System Model of the National Basic Research Program of China (Grant No.2010CB951901)
文摘Based on time series and linear trend analysis, the authors evaluated the performance of the fourth gen- eration atmospheric general circulation model developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP AGCM4.0), in simulating surface air temperature (SAT) during the twentieth century over China and the globe. The numerical experiment is con- ducted by driving the model with the observed sea surface temperature and sea ice. It is shown that IAP AGCM4.0 can simulate the warming trend of the global SAT, with the major wanning regions in the high latitudes of the Northern Hemisphere and the mid-latitudes of the South- ern Hemisphere. While the simulated trend over the whole globe is close to the observation, the model trader- estimates the observed trend over the continents. More- over, the model simulates the spatial distribution of SAT in China, with a bias of approximately -2℃ in eastern China, but with a more serious bias in western China. Compared with the global mean, however, the correlation coefficient between the simulation and observation in China is significantly lower, indicating that there is large uncertainty in simulating regional climate change.
基金supported by National Natural Science Foundation of China (Grant Nos. 41301593 and 41471428)the Arid Meteorology Science Foundation, CMA (IAM201407)the State Key Development Program for BasicResearch of China (Grant No. 2012CB955402)
文摘The East Asian monsoon has a tremendous impact on agricultural production in China. An assessment of the risk of drought disaster in maize-producing regions is therefore important in ensuring a reduction in such disasters and an increase in food security. A risk assessment model, EPIC(Environmental Policy Integrated Climate) model, for maize drought disasters based on the Erosion Productivity Impact Calculator crop model is proposed for areas with the topographic characteristics of the mountainous karst region in southwest China. This region has one of the highest levels of environmental degradation in China. The results showed that the hazard risk level for the maize zone of southwest China is generally high. Most hazard index values were between 0.4 and 0.5,accounting for 47.32% of total study area. However,the risk level for drought loss was low. Most of the loss rate was <0.1, accounting for 96.24% of the total study area. The three high-risk areas were mainlydistributed in the parallel ridge–valley areas in the east of Sichuan Province, the West Mountain area of Guizhou Province, and the south of Yunnan Province.These results provide a scientific basis and support for the reduction of agricultural drought disasters and an increase in food security in the southwest China maize zone.
基金Projects(51978661,51778625)supported by the National Natural Science Foundation of ChinaProject(ACSKL2018KT12)supported by State Key Laboratory of Air-conditioning Equipment and System Energy Conservation,China。
文摘Personal conditioning system(PCS)is receiving considerable attention due to its energy-saving potential and the ability to satisfy individual comfort requirements.As a part of PCS,personal heating systems can maintain human thermal comfort in cold environments,which leads to their potential role of important heating mode in cold winter,especially in the Hot Summer and Cold Winter regions of China.In order to better promote the development and application of personal heating systems,this paper reviews the published studies.Personal heating systems can be divided into four types based on the mode of heat transfer:conductive,convective,radiative and combinative type.Characteristics of each category and respective devices are introduced.Furthermore,identifying the effects of personal heating on thermal comfort and the models for predicting or evaluating thermal comfort during local heating.This paper would provide users with a guideline for choosing suitable heating equipment during winter.
文摘Mathematical model is developed for prediction of physiological changes in man during work in hot environment taking into consideration intensity of work, clothing and environment. To evaluate human functional state the heat stress index was calculated. Modeling researches made the conclusion that the main risk factor during work in hot environment is water losses that happens through thermoregulatory sweat evaporation. Modeling showed that in humid environment man wearing protective clothing has short time to work as water losses became more than 2% of human weight that means body dehydration. Preliminary model prediction can be used as preventive method to avoid hazard of human health.
文摘This study is aimed to investigate and analyze the ecological technology around ecological environment resources of engineering in Taiwan. In Taiwan, the natural and artificial material applied in the ecological technology in internal currently, usually lack of evaluation for applicative conditions. Hence, this study carried on the whole research and identifications to draft the eco-materials of ecological technology. The evaluation models of applied materials for ecological technology were proposed. The quantitative score were obtained by expert's person evaluation. Three models were proposed to quantify the effects of applied materials on the ecological environment. The statistical procedures were adopted to compare the performance of these materials for ecological technology. The results indicated that the comparison of applied materials can be treated by quantitative analysis. For the further analysis, more evaluated data from expert's experience need to be collected then the bias of person subject can be reduced. In addition to reach the benefits in the respects of ecosystem, society, economy and function, also practice the comprehensive effects in ecological technology.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010201
文摘Based on the finite-volume coastal ocean model (FVCOM), a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen (BCM). The domain decomposition method, which is effective in describing the conservation of volume and non-conservation of mechanical energy in the utilization of tidal energy, was employed to estimate the theoretical tidal energy resources and developable energy resources, and to analyze the hydrodynamic effect of the tidal power station. This innovative approach has the advantage of linking physical oceanography with engineering problems. The results indicate that the theoretical annual tidal energy resources is about 2x 108 kwh under the influence of tidal power station; Optimized power installation is confirmed according to power generation curve from numerical analysis; the developable resources is about 38.2% of theoretical tidal energy resources with the employment of one-way electricity generation. The electricity generation time and power are 3479 hours and 2.55~104KW, respectively. The power station has no effect on the tide pattern which is semi-diumal tide in both two conditions, but the amplitudes of main constituents apparently decrease in the area near the dam, with the ME decreasing the most, about 62.92 cm. The tidal prism shrinks to 2.28×107 m3, but can still meet the flow requirement for tidal power generation. The existence of station increases the flow rate along the waterway and enhances the residual current. There are two opposite vortexes formed on the east side beside the dam of the station, which leads to pollutants gathering.
文摘The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with cycle number follows a traction function path. Two cycle life predicting models were established. The possible cycle life was extrapolated, which follows normal distribution well. The distribution parameters were estimated and the battery reliability was evaluated. The models' precision was validated and the effect of the cycle number on the predicting precision was analysed. The cycle life models and reliability evaluation method resolved the difficulty of battery life appraisal, such as long period and high cost.
文摘In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material causes iustable yarn formation, the investigation focuses on the fault characteristic existing in the dynamic tension. Analyzing the dynamic spinning system, the phenomenon of over random shock in a spinning triangle is discovered to be the main physical event prior to yarn end breakage. The fault characteristic is further confirmed by dynamic tests and signal processing, and can be used to make an approach to predicting yarn end breakage. A relative energy feature is defined for evaluating the tendency of yarn end breakage, and its effectiveness is verified by on.line monitoring tests in the laboratory. The research results show that the proposed dynamic fault model has not only an advantage in indicating the presence of fault characteristics, but also great potentials in quantitating fault in online spinning monitoring.
文摘China has a large potential to reduce CO2 emission in the Asian region. In this study, life cycle analyses of energy supply technologies in China were evaluated for enforcing the clean development mechanism (CDM). Wind power, integrated coal gasification combined cycle (IGCC), natural gas combined cycle (NGCC), and ultra super critical power plant (USC) were chosen as new power generation technologies. The system function of the developed model was enhanced to extend coverage to new technologies for power generation systems in China. CO2 intensities, energy profit ratios, and CO2 emission reductions are estimated based on the assumption that these power plants were constructed at Shanxi, Xinjiang, and Shanghai. Wind power showed the best results with regard to CO2 intensity and energy profit ratio. However, it also has some disadvantages with regard to the utilization factor and the lifetime. It is considered that wind power will become an important part of CDM activities as the utilization factor and the lifetime improve. An NGCC using a natural gas pipeline was found to be most advantageous in reducing CO2 emission. IGCC and USC were inferior to NGCC with regard to energy profit ratios and CO2 emission reductions.
基金Supported by the National Natural Science Foundation of China (70771060) the Natural Science Foundation of Shandong Province (Y2006H10) the Project of Humanities and Social Science (11YJA630101)
文摘This paper examined the method to evaluate structural complexity of circular economy system's industrial chain, which applied entropy information and hierarchical metrics to produce complexity degrees according to the theory of complex system. We developed an evaluation model to make a general metrics for circular economy system of industrial chains. The development of the evaluation tree drew upon five factors to identify the structural complexity. The evaluation model generated unitive entropy information from six data definition (node, level of community, metabolic span, degree of node, number of relation and connectivity of node) according to the evaluation tree. The industrial chains of Tashan circular economy park of Datong Coal Mine Group and Gujiao circular economy park of Xishan Coal-Electricity Group were evaluated by the proposed method. The key factors stunted by the decline of structural complexity were identified and the unitive metrics of entropy information of the industrial chain was shown for realigning the circular economy systems.
文摘Based on the fuzzy characters of eco-environmental quality conception and classification standards, the incompatibility of evaluation indexes, the statistical fluctuation of index values, an information entropy fuzzy matter-element model for evaluating regional eco-environmental quality is proposed by way of comprehensively utilizing such theories as information theory, fuzzy sets and matter-element theory, etc. As a case, the model established here is used to evaluate the eco-environmental quality of Lake Chaohu basin. In the case, the eco-environmental quality standards and the evaluated schemes are indicated as matter-elements, together. Through constructing compound fuzzy matter-element, probability compound fuzzy matter-element and self-information compound fuzzy matter- element, the information entropy of each matter-element (including evaluated schemes and classification standards) is calculated in the end. According to these obtained information entropy values, the evaluated schemes can be not only arranged in quality state order but also classified by classification standards .Study result shows that information entropy fuzzy matter-element model is suitable for regional eco-environmental quality assessment.
基金This work was supported in part by the National Key Research and Development Program of China(2017YFD0200506)the National Natural Science Foundation of China(21837001 and 21907036).
文摘The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate prediction of chemical poisoning of honey bees is a challenging task owing to a lack of understanding of chemical toxicity and introspection. Deep learning(DL) shows potential utility for general and highly variable tasks across fields. Here, we developed a new DL model of deep graph attention convolutional neural networks(GACNN) with the combination of undirected graph(UG) and attention convolutional neural networks(ACNN) to accurately classify chemical poisoning of honey bees. We used a training dataset of 720 pesticides and an external validation dataset of 90 pesticides, which is one order of magnitude larger than the previous datasets. We tested its performance in two ways: poisonous versus nonpoisonous and GACNN versus other frequently-used machine learning models. The first case represents the accuracy in identifying bee poisonous chemicals. The second represents performance advantages. The GACNN achieved ~6% higher performance for predicting toxic samples and more stable with ~7%Matthews Correlation Coefficient(MCC) higher compared to all tested models, demonstrating GACNN is capable of accurately classifying chemicals and has considerable potential in practical applications.In addition, we also summarized and evaluated the mechanisms underlying the response of honey bees to chemical exposure based on the mapping of molecular similarity. Moreover, our cloud platform(http://beetox.cn) of this model provides low-cost universal access to information, which could vitally enhance environmental risk assessment.
文摘Asia is experiencing a more rapid economic growth compared to any other regions. The contamination of soil and groundwater with metals can mainly be attributed to human activities; therefore, risk assessments to characterize the nature and magnitude of risks to humans and ecological receptors from contaminants are important. Risk assessments are often iterative processes, which involve identification and filling data gap. Experimental samplings, geostatistical and multivariate statistical methods as well as multimedia risk assessment modeling are the three major methodologies used in the assessment of metal contamination in soil and groundwater.This review highlights a number of measurements for improving risk calculation methods and expounds scientific approaches that involve the identification of the major source of contamination, exposure pathways and bioavailability of metals. In general, risk assessments of metals in soil and groundwater worldwide are mainly focused on the levels of contamination, identification of exposure pathways, and prediction of the probability of contamination. To date, very limited studies have reported the development of relevant environmental laws and policies in the regulation of soil and groundwater contamination in Asia. The development, variations and limitations in the regulations of soil and groundwater contamination among developed countries may provide helpful guidance for the developing countries in Asia.