优化传统微电网的容量配置对其经济性的提升效果有限。为进一步提升经济性,文中在传统微电网的基础上耦合垃圾填埋气发电(landfill gas power generation,LGPG)和电转气(power to gas,P2G),提出一种基于LGPG-P2G的微电网模型。首先,综...优化传统微电网的容量配置对其经济性的提升效果有限。为进一步提升经济性,文中在传统微电网的基础上耦合垃圾填埋气发电(landfill gas power generation,LGPG)和电转气(power to gas,P2G),提出一种基于LGPG-P2G的微电网模型。首先,综合考虑碳交易和资金的时间价值对容量优化配置的影响,引入全生命周期理论和经济学中的净现值分析法;然后,以全生命周期的收益最大为目标,利用变异粒子群算法求解4种场景下的微电网容量最优配置,并使用Cplex求解传统微电网模型和所提微电网模型容量最优配置下的最优调度方案。结果表明在碳交易背景下基于LGPG-P2G的微电网模型具有更好的经济性。展开更多
In the last few years the numerical methods for solving the fractional differential equations started to be applied intensively to real world phenomena. Having these things in mind in this manuscript we focus on the f...In the last few years the numerical methods for solving the fractional differential equations started to be applied intensively to real world phenomena. Having these things in mind in this manuscript we focus on the fractional Lagrangian and Harniltonian of the complex Bateman-Feshbach Tikochinsky oscillator. The numerical analysis of the corresponding fractionaJ Euler-Lagrange equations is given within the Griinwald-Letnikov approach, which is power series expansion of the generating function.展开更多
文摘优化传统微电网的容量配置对其经济性的提升效果有限。为进一步提升经济性,文中在传统微电网的基础上耦合垃圾填埋气发电(landfill gas power generation,LGPG)和电转气(power to gas,P2G),提出一种基于LGPG-P2G的微电网模型。首先,综合考虑碳交易和资金的时间价值对容量优化配置的影响,引入全生命周期理论和经济学中的净现值分析法;然后,以全生命周期的收益最大为目标,利用变异粒子群算法求解4种场景下的微电网容量最优配置,并使用Cplex求解传统微电网模型和所提微电网模型容量最优配置下的最优调度方案。结果表明在碳交易背景下基于LGPG-P2G的微电网模型具有更好的经济性。
基金Supported in part by the Slovak Grant Agency for Science under Grants VEGA:1/0497/11,1/0746/11,1/0729/12the Slovak Research and Development Agency under Grant No.APVV-0482-11
文摘In the last few years the numerical methods for solving the fractional differential equations started to be applied intensively to real world phenomena. Having these things in mind in this manuscript we focus on the fractional Lagrangian and Harniltonian of the complex Bateman-Feshbach Tikochinsky oscillator. The numerical analysis of the corresponding fractionaJ Euler-Lagrange equations is given within the Griinwald-Letnikov approach, which is power series expansion of the generating function.