Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical...Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.展开更多
It has been found in our past studies that the installation of asymmetric plate at the inlet of inducer is effective for the suppression of cavitation surge phenomenon.In the present study,the suction performance of 2...It has been found in our past studies that the installation of asymmetric plate at the inlet of inducer is effective for the suppression of cavitation surge phenomenon.In the present study,the suction performance of 2-bladed helical inducer with an inlet asymmetric plate is experimentally investigated.It is observed that the suction performance in large flow rate conditions is not significantly influenced by the asymmetric plate,whereas the head of inducer with the asymmetric plate increases just before the head breakdown in partial flow conditions.To understand the mechanism of this additional head,the flow measurements and the numerical simulations are carried out.It is found that the circumferential component of absolute velocity at the exit of inducer slightly increases with the development of cavitation in both cases with and without the inlet asymmetric plate,indicating the increase of the theoretical head.The theoretical head increase with the inlet asymmetric plate is also confirmed by the unsteady numerical simulations,suggesting that the additional head is achieved through the increase of the theoretical head with the change of the exiting flow from the inducer associated with some amount of cavitation.展开更多
基金Projects(51674154,51704125,51874188) supported by the National Natural Science Foundation of ChinaProjects(2017T100116,2017T100491,2016M590150,2016M602144) supported by the China Postdoctoral Science Foundation+2 种基金Projects(2017GGX30101,2018GGX109001,ZR2017QEE013) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLCRSM18KF012) supported by the State Key Laboratory of Coal Resources and Safe Mining,ChinaProject(2018WLJH76) supported by the Young Scholars Program of Shandong University,China
文摘Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.
文摘It has been found in our past studies that the installation of asymmetric plate at the inlet of inducer is effective for the suppression of cavitation surge phenomenon.In the present study,the suction performance of 2-bladed helical inducer with an inlet asymmetric plate is experimentally investigated.It is observed that the suction performance in large flow rate conditions is not significantly influenced by the asymmetric plate,whereas the head of inducer with the asymmetric plate increases just before the head breakdown in partial flow conditions.To understand the mechanism of this additional head,the flow measurements and the numerical simulations are carried out.It is found that the circumferential component of absolute velocity at the exit of inducer slightly increases with the development of cavitation in both cases with and without the inlet asymmetric plate,indicating the increase of the theoretical head.The theoretical head increase with the inlet asymmetric plate is also confirmed by the unsteady numerical simulations,suggesting that the additional head is achieved through the increase of the theoretical head with the change of the exiting flow from the inducer associated with some amount of cavitation.