Based on the impact of the stress perturbation effect created by simultaneous propagation of multiple fractures in the process of simultaneous hydraulic fracturing, a thorough research on the mechanism and adaptation ...Based on the impact of the stress perturbation effect created by simultaneous propagation of multiple fractures in the process of simultaneous hydraulic fracturing, a thorough research on the mechanism and adaptation of simultaneous fracturing of double horizontal wells in ultra-low permeability sandstone reservoirs was conducted by taking two adjacent horizontal wells(well Yangping-1 and well Yangping-2 located in Longdong area of China Changqing Oilfield) as field test wells. And simultaneous fracturing optimal design of two adjacent horizontal wells was finished and employed in field test. Micro-seismic monitoring analysis of fracture propagation during the stimulation treatment shows that hydraulic fractures present a pattern of complicated network expansion, and the well test data after fracturing show that the daily production of well Yangping-1 and well Yangping-2 reach105.8 t/d and 87.6 t/d, which are approximately 9.4 times and 7.8 times the daily production of a fractured vertical well in the same area, respectively. Field test reflects that simultaneous hydraulic fracturing of two adjacent horizontal wells can enlarge the expansion area of hydraulic fractures to obtain a lager drainage area and realize the full stimulation of ultra-low permeability sandstone reservoirs in China Changqing oilfield. Therefore, simultaneous fracturing of two adjacent horizontal wells provides a good opportunity in stimulation techniques for the efficient development of ultra-low permeability reservoirs in China Changqing oilfield,and it has great popularization value and can provide a new avenue for the application of stimulation techniques in ultra-low permeability reservoirs in China.展开更多
基金Project(51404204)supported by the National Natural Science Foundation of ChinaProject(20135121120002)supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2014QHZ005)supported by Scientific Research Starting Projecting of SWPU,China
文摘Based on the impact of the stress perturbation effect created by simultaneous propagation of multiple fractures in the process of simultaneous hydraulic fracturing, a thorough research on the mechanism and adaptation of simultaneous fracturing of double horizontal wells in ultra-low permeability sandstone reservoirs was conducted by taking two adjacent horizontal wells(well Yangping-1 and well Yangping-2 located in Longdong area of China Changqing Oilfield) as field test wells. And simultaneous fracturing optimal design of two adjacent horizontal wells was finished and employed in field test. Micro-seismic monitoring analysis of fracture propagation during the stimulation treatment shows that hydraulic fractures present a pattern of complicated network expansion, and the well test data after fracturing show that the daily production of well Yangping-1 and well Yangping-2 reach105.8 t/d and 87.6 t/d, which are approximately 9.4 times and 7.8 times the daily production of a fractured vertical well in the same area, respectively. Field test reflects that simultaneous hydraulic fracturing of two adjacent horizontal wells can enlarge the expansion area of hydraulic fractures to obtain a lager drainage area and realize the full stimulation of ultra-low permeability sandstone reservoirs in China Changqing oilfield. Therefore, simultaneous fracturing of two adjacent horizontal wells provides a good opportunity in stimulation techniques for the efficient development of ultra-low permeability reservoirs in China Changqing oilfield,and it has great popularization value and can provide a new avenue for the application of stimulation techniques in ultra-low permeability reservoirs in China.